Let $V$ be a vector space ($\operatorname{dim}V<\infty$) over some field $\mathbb{F}$, $\operatorname{char}(\mathbb{F})\neq2$
and let $T:V\to V$ be linear such that $T\circ T=Id_V$.
Define $\quad U=\{v\in V|\:T(v)=v\}$,$\quad W=\{v\in V|\:T(v)=-v\}$Show:
1) $V=U\oplus W$
2) $T=r_{U,W}$ (reflection)
Progress:
1) $$U\cap W=\{v\in V|\:T(v)=v\quad \operatorname{and}\quad T(v)=-v\}$$ The only vector which satisfies that is $0\in V$ therefore $U\cap W=\{0\}$.
My struggle here is with showing that $V=U+W$
Moreover, how does $\operatorname{char}(\mathbb{F})\neq2$ affect the problem?