Is $ \mathbb{Z}[\sqrt {D}]$ an integral domain ?
My solution:
$$ \mathbb{Z}[\sqrt {D}]=\{ a+b\sqrt {D} , a,b \in \mathbb{Z}\}$$
No ,
Suppose $\mathbb {Z}[\sqrt {D}]$ is integral domain then Let $a, b \in \mathbb {Z}[\sqrt {D}]$ Where$ a=x +y\sqrt {D}$
$||a||$ $||b||=0$
$ \implies ||a|| =0 or ||b||=0$
If $||a|| =0 $then $x^2-y^2D=0$ So $x= y\sqrt {D}$
then it is contradiction when D is not perfect square , so it isn't Integra domain.
If D is prefect square then it is integral domain
Can anyone tell me if it is true or not? if not , any hint for solve ? Thanks