How can I prove this inequality using the triangle inequality?
$|a-b| \leq |a-c| + |c-b|$
How can I prove this inequality using the triangle inequality?
$|a-b| \leq |a-c| + |c-b|$
$$\vert (a-c)+(c-b) \vert = \vert a-b \vert \leq \vert a-c \vert + \vert c-b \vert$$