I'm looking for the answer to this question. But I could not find the "satisfactory" answer.
This is obvious,
$$\lim_{n\to \infty} \left(1+\frac 1n \right)=1+0=1$$
and
$$\lim_{n\to \infty} \left(1+ \frac 1n \right)^n=e≈2.718281...$$
And also we can write,
$$\lim_{n\to \infty} \left(1+ \frac 1n \right)^n=\left(1+0 \right)^{\infty}=1^{\infty}≠1$$
The point, which that I can not understand is:
$$\lim_{n\to \infty} 1^{\infty}=1^{\infty}=1$$
But, this is also true:
$$\lim_{n\to \infty} \left (1+\frac 1n \right) =\lim_{n\to\infty}1=1$$
Why $\lim_{n\to \infty} \left(1+ \frac 1n \right)^n=e$ doesn't imply $\lim_{n\to \infty} \left(1+\frac 1n \right)≠1?$