Let $\phi$ be the golden ratio. We know it has a beautiful infinite nested radical,
$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}=\phi$$
However, it is also the case that,
$$3+\sqrt{11+\sqrt{11+\sqrt{11+\sqrt{11+\dots}}}}=\phi^4$$
$$5+\sqrt{31+\sqrt{31+\sqrt{31+\sqrt{31+\dots}}}}=\phi^5$$
$$\tfrac{17}2+\sqrt{\tfrac{319}4+\sqrt{\tfrac{319}4+\sqrt{\tfrac{319}4+\sqrt{\tfrac{319}4+\dots}}}}=\phi^6$$
Q: How do we show that, in general
$$a_n+\sqrt{b_n+\sqrt{b_n+\sqrt{b_n+\sqrt{b_n+\dots}}}}=\phi^n$$
where,
$$a_n = \frac{L_n-1}2,\quad b_n = \frac{5F_n^2-1}4$$
with Lucas numbers $L_n$ and Fibonacci numbers $F_n$?