Assume matrix
$$A= \begin{bmatrix} -1&0&0&0&0\\ -1&1&-2&0&1\\ -1&0&-1&0&1\\ 0&1&-1&1&0\\ 0&0&0&0&-1 \end{bmatrix} $$
Its Jordan Canonical Form is $$J= \begin{bmatrix} -1&1&0&0&0\\ 0&-1&0&0&0\\ 0&0&-1&0&0\\ 0&0&0&1&1\\ 0&0&0&0&1 \end{bmatrix} $$
I am trying to find a nonsingular $P$, let $P=\begin{bmatrix}\mathbf{p}_1&\mathbf{p}_2&\mathbf{p}_3&\mathbf{p}_4&\mathbf{p}_5\end{bmatrix}$ s.t. $J=P^{-1}AP\Leftrightarrow AP=PJ$. I came up with the Wikipedia article on JCF and I think I need to find the generalized eigenvectors so that $AP=PJ=\begin{bmatrix}-\mathbf{p_1}&\mathbf{p_1}-\mathbf{p_2}&-\mathbf{p_3}&\mathbf{p_4}&\mathbf{p_4}+\mathbf{p_5}\end{bmatrix}$ yielding the systems $$(A+I)\mathbf{p_1}=\mathbf{0}$$ $$(A+I)^2\mathbf{p_2}=\mathbf{0}$$ $$(A+I)\mathbf{p_3}=\mathbf{0}$$ $$(A-I)\mathbf{p_4}=\mathbf{0}$$ $$(A-I)^2\mathbf{p_5}=\mathbf{0}$$
I solved each of these systems making sure that the vectors $\mathbf{p_i}$ I chose are linearly independent. So I chose $$P=\begin{bmatrix}\mathbf{p}_1&\mathbf{p}_2&\mathbf{p}_3&\mathbf{p}_4&\mathbf{p}_5\end{bmatrix}=\begin{bmatrix}1&2&-2&0&0\\1&1&2&0&1\\1&1&2&0&0\\0&0&0&1&1\\1&1&-2&0&0\end{bmatrix}$$ which even though is nonsingular I am not getting $AP=PJ$.
What am I doing wrong?