Let $f\in C[a,b]$. prove that $$\lim_{n \to \infty} \left(\int ^b_af(x)^n dx\right)^\frac{1}{n}=\sup _{x \in [a,b]} |f(x)|$$
i really have no idea where to start
Let $f\in C[a,b]$. prove that $$\lim_{n \to \infty} \left(\int ^b_af(x)^n dx\right)^\frac{1}{n}=\sup _{x \in [a,b]} |f(x)|$$
i really have no idea where to start
I assume $f$ is positive (as stated there is a problem with the left term).
Let $C := \sup_{[a,b]} f(x)$
$\left(\int ^b_af(x)^n dx\right)^\frac{1}{n} ≤ \left(\int ^b_aC^n dx\right)^\frac{1}{n} = C(b-a)^{1/n}$
Now, fix $\epsilon$ and consider $[c,d], d >c$ on which $f(x) > C - \epsilon$
$\left(\int ^b_af(x)^n dx\right)^\frac{1}{n} ≥ \left(\int ^d_cf(x)^n dx\right)^\frac{1}{n} ≥ (C- \epsilon)(d-c)^{1/n}$
To conclude, use $y^{1/n} \to 1$, for all $y > 0$.