How do I identify a 3 variable determinant whether it is a symmetric polynomial or not without actually expanding it ?
Examples: $$ \begin{vmatrix} 1+a^2&ab&ac\\ ab&1+b^2&bc\\ ca&cb&1+c^2\\ \end{vmatrix}=1+a^2+b^2+c^2 $$ $$\begin{vmatrix} x+a&y&z\\ x&y+a&z\\ x&y&z+a\\ \end{vmatrix}=a^2(x+y+z+a),\\\begin{vmatrix} x-y-z&2x&2x\\ 2y&y-z-x&2y\\ 2z&2z&z-x-y\\ \end{vmatrix}=(x+y+z)^3 $$ $$ \begin{vmatrix} 3x&-x+y&-x+z\\ -y+x&3y&-y+z\\ -z+x&-z+y&3z \end{vmatrix}=3(x+y+z)(xy+yz+zx), \begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (z+x)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \\ \end{vmatrix}=2xyz(x+y+z)^3 $$ $$ \begin{vmatrix} (y+z)^2&xy&zx\\ xy&(x+z)^2&yz\\ xz&yz&(x+y)^2 \end{vmatrix}=2xyz(x+y+z)^3 , \begin{vmatrix} y+z&z&y\\ z&z+x&x\\ y&x&x+y \end{vmatrix}=4xyz\\ \begin{vmatrix} yz-x^2&zx-y^2&xy-z^2\\ zx-y^2&xy-z^2&yz-x^2\\ xy-z^2&yz-x^2&zx-y^2 \end{vmatrix}=\frac{1}{4}(x+y+z)^2\Big[(x-y)^2+(y-z)^2+(z-x)^2\Big]^2 $$ $$ \begin{vmatrix} 1+a^2-b^2&2ab&-2b\\ 2ab&1-a^2+b^2&2a\\ 2b&-2a&1-a^2-b^2\\ \end{vmatrix}=(1+a^2+b^2)^3 $$ My Attempt:
Lets take the example $\Delta=\begin{vmatrix} y+z&z&y\\ z&z+x&x\\ y&x&x+y \end{vmatrix}$. $$ \Delta_{x\leftrightarrow y}=\begin{vmatrix} x+z&z&x\\ z&z+y&y\\ x&y&x+y \end{vmatrix}=-\begin{vmatrix} z&z+y&y\\ x+z&z&x\\ x&y&x+y \end{vmatrix}=\begin{vmatrix} y+z&z&y\\ z&z+x&x\\ y&x&x+y \end{vmatrix}=\Delta $$ $$ \Delta_{x\leftrightarrow z}=\begin{vmatrix} y+x&x&y\\ x&z+x&z\\ y&z&z+y \end{vmatrix} =-\begin{vmatrix} y&z&z+y\\ x&z+x&z\\ y+x&x&y\\ \end{vmatrix}= \begin{vmatrix} z+y&z&y\\ z&z+x&x\\ y&x&y+x\\ \end{vmatrix}=\Delta $$ $$ \Delta_{y\leftrightarrow z}=\begin{vmatrix} y+z&y&z\\ y&y+x&x\\ z&x&x+z \end{vmatrix} =-\begin{vmatrix} y+z&y&z\\ z&x&x+z\\ y&y+x&x\\ \end{vmatrix}= \begin{vmatrix} z+y&z&y\\ z&z+x&x\\ y&x&y+x\\ \end{vmatrix}=\Delta $$ Thus $\Delta(x,y,z)$ is a symmetric polynomial.
Is there a better and easier way to identify such determinants ?
My Observation:
It may be a stupid observation while looking for a shortcut to the mentioned problem. For each of the cases the product of diagonal terms and product of the rest are separately symmetric polynomials. If not possible then we will do row or column operation and check the same. Can I use it somehow to identify the determinant ?
Example: $$ \begin{vmatrix} a^2&bc&ac+c^2\\ a^2+ab&b^2&ac\\ ab&b^2+bc&c^2\\ \end{vmatrix}=4a^2b^2c^2 $$ is a symmetric polynomial of degree 6. Here,
Product of the diagonal terms, $a^2b^2c^2$ is a symmetric polynomial.
Product of the rest, $$ (a^2+ab)(ac+c^2)(b^2+bc).ab.bc.ca=a(a+b).b(b+c).c(a+c).a^2b^2c^2\\ =a^3b^3c^3.(a+b)(b+c)(c+a) $$ which is also a symmetric polynomial.
Note:
The reason why I am asking this is that If I can quickly identify by just looking at it using some shortcuts rather than actually checking for each cases, atleast for a $3x3$ matrix with 3 variables, it'd help ease to factorize the determinant using factor theorem. For example, check