If $\lim\limits_{x\to c} f(x)$ exists, and $a \leq f(x) \leq b \:\forall x\in\mathbb{R}$, then $a\leq \lim\limits_{x\to c} f(x)\leq b$.
I was able to prove this by contradiction (i.e. assume $\lim\limits_{x\to c} f(x)=L < a$ or $L>b$, choose $\epsilon:=\frac{a-L}{2}$ in the former case), but is there a direct approach? Thanks.