Let $R_i$ be the rotation about the point $p_i = (x_i, y_i)$ with the rotation angle $\theta_i$.
Let $R_\theta = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{pmatrix}$ be the rotation around the origin.
$R_i$ can be expressed as
$$R_i \begin{pmatrix} x \\ y\end{pmatrix} = R_{\theta_i} \begin{pmatrix} x \\ y\end{pmatrix} + (I - R_{\theta_i})\begin{pmatrix} x_i \\ y_i\end{pmatrix} $$
where $I$ is the identity.
Now we have:
\begin{align}R_2R_1 \begin{pmatrix} x \\ y\end{pmatrix} &= R_2 \left(R_{\theta_1} \begin{pmatrix} x \\ y\end{pmatrix} + (I - R_{\theta_1})\begin{pmatrix} x_1 \\ y_1\end{pmatrix}\right)\\
&= R_{\theta_2}R_{\theta_1} \begin{pmatrix} x \\ y\end{pmatrix} + R_{\theta_2}(I - R_{\theta_1})\begin{pmatrix} x_1 \\ y_1\end{pmatrix} + (I - R_{\theta_2})\begin{pmatrix} x_2 \\ y_2\end{pmatrix}\\
&= R_{\theta_1 + \theta_2}\begin{pmatrix} x \\ y\end{pmatrix} + \underbrace{(R_{\theta_2} - R_{\theta_1 + \theta_2})\begin{pmatrix} x_1 \\ y_1\end{pmatrix} + (I - R_{\theta_2})\begin{pmatrix} x_2 \\ y_2\end{pmatrix}}_{=b}
\end{align}
For this to be of the form above, the rotation angle is obviously $\theta_1 + \theta_2$, and the pivot point then has to be $(I - R_{\theta_1 + \theta_2})^{-1}b$.
The matrix $I - R_{\theta_1 + \theta_2}$ is indeed invertible when $\theta_1 + \theta_2 \ne 2k\pi$ for $k \in \mathbb{Z}$:
$$\begin{vmatrix} 1 - \cos(\theta_1 + \theta_2) & \sin(\theta_1 + \theta_2) \\ -\sin(\theta_1 + \theta_2) & 1 - \cos(\theta_1 + \theta_2)\end{vmatrix} = 2(1 - \cos(\theta_1 + \theta_2)) \ne 0$$