In another way
$$
\eqalign{
& P(n) = \prod\limits_{j = 1}^n {\left( {1 + {{2j - 1} \over {2n}}} \right)^{\,1/\left( {2n} \right)} } = \prod\limits_{j = 1}^n {\left( {{{n - 1/2 + j} \over n}} \right)^{\,1/\left( {2n} \right)} } = \cr
& = \prod\limits_{j = 0}^{n - 1} {\left( {{{n + 1/2 + j} \over n}} \right)^{\,1/\left( {2n} \right)} } \cr}
$$
squaring, converting to Rising Factorial expressed through the Gamma function
$$
P^{\,2} (n) = {1 \over n}\left( {\left( {n + 1/2} \right)^{\,\overline {\,n\,} } } \right)^{\;1/n} = {1 \over n}\left( {{{\Gamma \left( {2n + 1/2} \right)} \over {\Gamma \left( {n + 1/2} \right)}}} \right)^{\;1/n}
$$
and then using Stirling approximation
$$
\eqalign{
& P^{\,2} (n) \approx {1 \over n}\left( {{{\sqrt {\,{{2\,\pi } \over {2n + 1/2}}\,} \left( {{{2n + 1/2} \over e}} \right)^{2n + 1/2} } \over {\sqrt {\,{{2\,\pi } \over {n + 1/2}}\,} \left( {{{n + 1/2} \over e}} \right)^{n + 1/2} }}} \right)^{\;1/n} \approx \cr
& \approx {1 \over n}\left( {{{\left( {2n + 1/2} \right)^{2n + 1/2} } \over {\sqrt {\,2\,} e^n \left( {n + 1/2} \right)^{n + 1/2} }}} \right)^{\;1/n} \approx {n \over n}\left( {\left( 2 \right)^{2n + 1/2} {{\left( {1 + 1/2n} \right)^{n + 1/2} } \over {\sqrt {\,2\,} e^n }}} \right)^{\;1/n} \approx \cr
& \approx {4 \over e} \cr}
$$
That is $P(n)\; \to \; 2/\sqrt{e}$