Prove $$\color{blue}{ \Delta=\begin{vmatrix} (y+z)^2&xy&zx\\ xy&(x+z)^2&yz\\ xz&yz&(x+y)^2 \end{vmatrix}=2xyz(x+y+z)^3} $$ using elementary operations and the properties of the determinants without expanding.
My Attempt $$ \Delta\stackrel{C_1\rightarrow C_1+C_2+C_3}{=}\begin{vmatrix} xy+y^2+yz+zx+yz+z^2&xy&zx\\ x^2+xy+xz+xz+yz+z^2&(x+z)^2&yz\\ x^2+xy+xz+xy+y^2+yz&yz&(x+y)^2\\ \end{vmatrix}\\ =\begin{vmatrix} y(x+y+z)+z(x+y+z)&xy&zx\\ x(x+y+z)+z(x+y+z)&(x+z)^2&yz\\ x(x+y+z)+y(x+y+z)&yz&(x+y)^2\\ \end{vmatrix}\\ =(x+y+z)\begin{vmatrix} y+z&xy&zx\\ x+z&(x+z)^2&yz\\ x+y&yz&(x+y)^2\\ \end{vmatrix}\\ \stackrel{R_1\rightarrow R_1+R_2+R_3}{=} \\(x+y+z)\begin{vmatrix} 2(x+y+z)&x^2+xy+xz+xz+yz+z^2&x^2+xy+zx+xy+y^2+yz\\ x+z&(x+z)^2&yz\\ x+y&yz&(x+y)^2\\ \end{vmatrix}\\ =(x+y+z)^2\begin{vmatrix} 2&x+z&x+y\\ x+z&(x+z)^2&yz\\ x+y&yz&(x+y)^2\\ \end{vmatrix}\\ =2(x+y+z)^2\begin{vmatrix} 1&\frac{x+z}{2}&\frac{x+y}{2}\\ x+z&(x+z)^2&yz\\ x+y&yz&(x+y)^2 \end{vmatrix} \stackrel{R_2\rightarrow R_2-(x+z)R_1|R_2\rightarrow R_3-(x+y)R_1}{=} 2(x+y+z)^2\begin{vmatrix} 1&\frac{x+z}{2}&\frac{x+y}{2}\\ 0&\frac{(x+z)^2}{2}&\frac{yz-x^2-xy-xz}{2}\\ 0&\frac{yz-x^2-xy-xz}{2}&\frac{(x+y)^2}{2} \end{vmatrix} $$ How do I extract $x+y+z$ or $xyz$ from the determinant to find the solution ?
Note: In a similar problem How to solve this determinant there seems to be solutions talking about factor theorem and polynomials. I am basically looking for extracting the terms $(x+y+z)$ or $xyz$ from the given determinant to solve it only using the basic properties of determinants.