3

Linear bounded operator T on $l^2$ is given by : $T(x_1,x_2,x_3,..) := (x_1,x_1,x_1,x_2,x_2,x_2,x_3,x_3,x_3,..)$.

Prove that $\frac{T^*T}{3}$ and $\frac{TT^*}{3}$ are orthogonal projections.

Thanks in advance for the help

David
  • 199

2 Answers2

2

You have $$ \langle T^*Tx,y\rangle=\langle Tx,Ty\rangle= 3\sum_nx_n\overline{y_n}=\langle 3x,y\rangle. $$ So $T^*T=3I$. Since $\ker TT^*=\ker T^*$, we have $$ \overline{\text{ran}\,TT^*}=\ker(TT^*)^\perp=\ker (T^*)^\perp=\overline{\text{ran}\,T}. $$ So the range of $TT^*/3$ equals the range of $T$. And it is a projection, since $$ \left(\frac{TT^*}3\right)^2=\frac{TT^*TT^*}9=\frac{3TT^*}9=\frac{TT^*}3. $$ So $TT^*/3$ is the orthogonal projection onto the range of $T$.

Martin Argerami
  • 217,281
2

Directly from the matrices (the transpose conjugate of that of $T$) you get that $$T^*(x_1,x_2,x_3,...)=(x_1+x_2+x_3,x_4+x_5+x_6,...)$$

Therefore $$\frac{1}{3}T*T(x_1,x_2,x_3,...)=(x_1,x_2,x_3,...)$$

and

$$\frac{1}{3}TT*(x_1,x_2,x_3,...)=(\frac{x_1+x_2+x_3}{3},\frac{x_1+x_2+x_3}{3},\frac{x_1+x_2+x_3}{3}, \frac{x_4+x_5+x_6}{3},\frac{x_4+x_5+x_6}{3},\frac{x_4+x_5+x_6}{3},...)$$

which projects over the space generated by $(1,1,1,0,...), (0,0,0,1,1,1,0,...),...$