I am reading some paper, where they claim the following:
Let $G$ be a compact (Hausdorff) group and let $X$ be a locally, compact, Hausdorff space. Assume that $G$ acts on $X$ continuously. Denote by $C_0(X)$ the continuous functions on $X$ with complex values. Denote by $X/G$ the orbit space (it is Hausdorff as well), and let $\pi: X\to X/G$ be the canonical quotient map.
claim: Let $f\in C_0(X)$. The map $\pi(x)\mapsto sup_{g\in G}|f(g\cdot x)|$ is a continuous map $X/G\to \mathbb{R}$.
The proof starts like that: Let $f\in C_0(X)$, let $\epsilon>0$ and let $x\in X$. Use continuity of $f$ to find, for every $g\in G$, an open neighborhood $W_g$ of $g\cdot x$ such that $|f(g\cdot x)-f(y)|<\epsilon$ for all $y\in W_g$. By compactness of $G$, there exists an open neighborhood $W$ of $x$ such that $g\cdot W\subseteq W_g$ for all $g\in G$.
I can not see why the last claim is true or why it follows from compactness... it seems like they actually claim that $\bigcap\limits_{g\in G}g^{-1}\cdot W_g$ is open (of course, it contains $x$, but I don't see why should it be open...).
An alternative approach to the proof or counter example for the claim would be appreciated as well.
Thank for any help!