Given that $$\begin{aligned} &x=r\cos(\theta),\\ &y=r\sin(\theta),\\ & \qquad \text{and}\\ &x^2+y^2=r^2 \end{aligned}$$ Use the chain rule to show that $\nabla=\mathbf{\hat{r}}\frac\partial{\partial r}+\mathbf{\hat{\theta}}\frac1r\frac\partial{\partial\theta}.$
I derived that $\,\mathbf{\hat{r}}=\cos(\theta)\mathbf{\hat{\text{i}}}+\sin(\theta)\mathbf{\hat{\text{j}}}\,$ and that $\,\mathbf{\hat{\theta}}=-\sin(\theta)\mathbf{\hat{\text{i}}}+\cos(\theta)\mathbf{\hat{\text{j}}}.$ But I can't seem to gro from here.