Hint.
As $b\int_0^L f(t)dt = c_f$ we have
$$
f(t) = \frac{c+c_f}{a^2}+c_1 \cos (a t)+c_2 \sin (a t)\ \ \ \ \ (*)
$$
and we have that
$$
b\int_0^L f(t)dt = c_f\Rightarrow c_f = \frac{a b c_1 \sin (a L)-a b c_2 \cos (a L)+a b c_2+b c L}{a^2-b L}
$$
now after substituting $c_f$ in $(*)$ we can proceed to determine $\{c_1,c_2\}$ using the boundary conditions.
NOTE
The final solution gives
$$
f(t) = \frac{b R \sin \left(\frac{a L}{2}\right)+a c \cos \left(\frac{a
L}{2}\right)}{a \left(a^2-b L\right) \cos \left(\frac{a L}{2}\right)+2 b \sin \left(\frac{a
L}{2}\right)}+\frac{\left(a^3 R-a b L R+b R \sin (a L)+a c \cos (a L)-a
c\right)}{a \left(a^2-b L\right) \sin (a L)-2 b \cos (a L)+2 b}\sin(a t)-\frac{ \left(b R \sin \left(\frac{a L}{2}\right)+a c \cos \left(\frac{a
L}{2}\right)\right)}{a \left(a^2-b L\right) \cos \left(\frac{a L}{2}\right)+2 b \sin
\left(\frac{a L}{2}\right)}\cos(a t)
$$