3

Let $ \, K \, $ be a field, $X \, $ a $ \, K$-vector space and $ \, V \, $ and $ \, W \, $ subspaces of $ \, X$. I wonder if the (Hamel - algebraic) dimension formula of the sum $ \ V+W \ $ still holds for infinite dimensional case. Namely

$dim_K (V+W) + dim_K (V \cap W) = dim_K(V) + dim_K(W) \ . $

Specifically, let $ \, B \, $ be a basis for $ \ V \cap W$, $B_V \ $ be a basis for $ \, V$, $B_W \ $ be a basis for $ \, W \, $ and $ \, \overline{B_V} \, $ and $ \, \overline{B_W} \, $ be basis for $ \ V+W \ $ such that $$B \subset B_V \subset \overline{B_V} \qquad \text{and} \qquad B \subset B_W \subset \overline{B_W} \ \ \ . $$ I would like to find a bijection $$\overline{B_V} \sqcup B \to B_V \sqcup B_W \ \ , $$ if this is possible.

If not, then a counterexample would help. But I would still want to know if at least the inequality $$dim_K (V+W) \leq dim_K(V) + dim_K(W)$$ is valid. That is, find an injection $$\overline{B_V} \to B_V \sqcup B_W$$ or a surjection $$B_V \sqcup B_W \twoheadrightarrow \overline{B_V} \ \ . $$

Thanks in advance.

Gustavo
  • 2,628
  • Do you want an explicit bijection or a proof that there is one? – Arnaud D. Feb 01 '18 at 11:59
  • I would like to see a specific bijection, but I would also like, as a partial answer, just a proof that some exists. – Gustavo Feb 01 '18 at 12:09
  • I'm a bit confused by the notation. Do you mean that $\overline{B_V}$ is a basis for $V + W$ and that $\overline{B_W}$ is a different basis for $V + W$? – Vincent Feb 01 '18 at 12:23
  • BTW: it is obviously that the formula as stated in the yellow block holds: if at least one of the four terms equals 'infinity' then necessary both the entire left hand side AND the entire right hand side equal infinity as well. (There are only four cases to check here). Since the equation then reads 'infinity = infinity' we see that the formula is correct. The only situation this comment has not covered is the case when all four terms are finite. This case is much harder, but it is also the case where you already know that the formula is true. – Vincent Feb 01 '18 at 12:25
  • 1
    @Vincent $ , \overline{B_V} , $ and $ , \overline{B_W} , $ may be different yes. I can only say that they exist. For the BTW comment: sorry, but do you mean the same 'infinity'? – Gustavo Feb 01 '18 at 12:42
  • Ok, I see what you mean. So the more 'advanced' version of my statement is that if $\alpha$ is the largest cardinality appearing among the four terms then both sums should equal $\alpha$. However this assumes that the dimension of a vector space equals the cardinality of a basis. This can be a bit misleading. For instance in case of topological vector spaces we could allow for 'bases' with the property that the topological closure of their span equals the whole space and these could have cardinality much smaller than any 'true' basis. You should perhaps specify that to do with those. – Vincent Feb 01 '18 at 12:51
  • 1
    @Vincent this is precisely why I wrote "(Hamel - algebraic) dimension" in the OP. Sorry if I was not clear enough. But your comment was interesting, I started to think of cases, as you suggested. Thank you. – Gustavo Feb 01 '18 at 13:08

3 Answers3

6

Consider the linear map $T\colon V\oplus W\to X$ given by $T(v,w):=v+w$. Then $\dim{V\oplus W}=\dim{\ker{T}}+\dim{(V+W)}$.

Now, the linear map $\psi\colon V\cap W\to V\oplus W$ defined by $\psi(x):=(x,-x)$ is such that

  1. $\psi(x)\in\ker{T}$ for all $x\in V\cap W$,

  2. $\psi$ is onto $\ker{T}$, for if $(v,w)\in\ker{T}$, then $v+w=0$, then $v=-w\in V\cap W$ and $\psi(v)=(v,-v)=(v,w)$, and

  3. $\psi$ is $1-1$.

Hence $\dim{\ker{T}}=\dim{V\cap W}$, and we are done.

2

The following proof works for both finite and infinite vector spaces.

Let $\mathcal B$ be a basis for $V\cap W$. There exists a basis $\mathcal C$ of $V$ such that $\mathcal B\subset \mathcal C$. Similarly, there exists a basis $\mathcal D$ of $W$ such that $\mathcal B\subset \mathcal D$.

CLAIM: $\mathcal C\cup \mathcal D$ is a basis for $V+W$.

We will use this claim to prove the equality. By the definitions of cardinal sum and of dimension:

$$\dim(V+W)+\dim(V\cap W)=|\mathcal C\cup \mathcal D|+|\mathcal B|=|(\mathcal C\setminus \mathcal B)\cup \mathcal B\cup(\mathcal D\setminus \mathcal B)|+|\mathcal B|$$ $$|\mathcal C\setminus \mathcal B|+|\mathcal B|+|\mathcal D\setminus \mathcal B|+|\mathcal B|=|(\mathcal C\setminus \mathcal B)\cup \mathcal B|+|(\mathcal D\setminus \mathcal B)\cup \mathcal B|=|\mathcal C|+|\mathcal D|=\dim V+\dim W.$$

PROOF OF THE CLAIM: Indeed, notice that $\mathcal C\cup \mathcal D=\mathcal C'\cup \mathcal B\cup \mathcal D'$, where $\mathcal C'=\mathcal C\setminus \mathcal B$ and $\mathcal D'=\mathcal D\setminus \mathcal B$, and that $\mathcal B, \mathcal C', \mathcal D'$ are pairwise disjoint.

$\mathcal C\cup \mathcal D$ generates $\mathcal V+W$: given $v \in V$ and $w \in W$, there exists finite sets $I \subset \mathcal C$, $J\subset \mathcal W$ and scalars $(a_x: x \in I)$, $(b_y: y \in J)$ such that:

$$v=\sum_{x \in I}a_x x, \, w=\sum_{y \in J}b_y y$$

Therefore:

$$v+w=\sum_{z \in I\cup J}c_z z$$

Where $c_z=a_z$, if $z \in \mathcal C'$, $c_z=a_z$, if $z \in \mathcal C'$ $c_z=b_z$, if $z \in \mathcal D'$ and $c_z=a_z+b_z$, if $z \in \mathcal B$.

It remains to see that $\mathcal C\cup \mathcal D$ is linearly independent. Suppose $I\subset \mathcal F\cup \mathcal D$ is finite and:

$$0=\sum_{z \in F}c_z z$$

We must see that each $c_z$ is zero. Let: $I=F\cap \mathcal C'$, $J=F\cap \mathcal D'$, $K=F\cap \mathcal B$. Notice that $I\cup J\cup K=F$ and that $I, J, K$ are pairwise disjoint. Then:

$$0=\sum_{z \in I}c_z z+\sum_{z \in J}c_z z+\sum_{z \in K}c_z z$$

Therefore, $$-\sum_{z \in I}c_z z=\sum_{z \in J}c_z z+\sum_{z \in K}c_z z$$

This implies that $-\sum_{z \in I}c_z \in V\cap W$, so there exists a finite subset $L$ of $\mathcal B$ and scalars $d_z$ for $z \in L$ such that:

$-\sum_{z \in I}c_z z=\sum_{z \in L}d_z z$.

Therefore:

$$\sum_{z \in L}d_z z=\sum_{z \in J}c_z z+\sum_{z \in K}c_z z$$ So by defining $e_z$ for $L\cup J\cup K$ such that $e_z=c_z$ for $z \in J$, $e_z= c_z$ for $z \in K\setminus L$, $e_z=-d_z$ for $ z \in L\setminus K$ and $e_z=-d_z+c_z$ for $z \in K\cap L$, it follows that:

$\sum_{z \in L\cup K\cup J}e_z z=0$

Since $L\cup K\cup J\subset \mathcal D$ is linearly independent, all $e_z$ are zero. Therefore for all $z \in J$, $e_z=c_z=0$.

Now recall that:

$$0=\sum_{z \in I}c_z z+\sum_{z \in J}c_z z+\sum_{z \in K}c_z z$$

So, $$0=\sum_{z \in I}c_z z+\sum_{z \in K}c_z z$$

Since $I\cup K$ is linearly independent and $I, K$ are disjoint, it follows that all the other $c_z$ are also zero. This proves the claim.

1

I started to write this before the analogous answer by Vinicius Rodrigues above. My notation is somewhat different, so I decided to post it anyway :-)


Another partial answer (a proof for the formula, but not showing a bijection) goes this way: forget about $ \, \overline{B_V} \, $ and $ \, \overline{B_W} \, $ and let's prove that $ \ B_V \cup B_W \ $ is a basis for $ \ V+W$.


PRELUDE

If $ \ V \subset W \ $ or $ \ W \subset V \, $, then the formula holds trivially. Let $ \ V \not\subset W \ $ and $ \ W \not\subset V \, $. So, $ \ B_V \not\subset B_W \ $ and $ \ B_W \not\subset B_V \, $.

Note that $ \ B = B_V \cap B_W \ $. In fact, it is straightforward that $ \ B \subset B_V \cap B_W \ $. If it was the case that $ \ B_V \cap B_W \not\subset B \, $, then there would be some $ \ x \in B_V \cap B_W \subset V \cap W \ $ such that $ \ x \notin B$. So, $ \, x \, $ would be a nonzero linear combination of elements from $ \ B \subset (B_V \setminus \left\{ x \right\} )$, which is absurd.

Thus $ \ B_V \setminus B \neq \varnothing \ $ and $ \ B_W \setminus B \neq \varnothing \, $.

We have a union $$B_V \cup B_W = B \cup (B_V \setminus B) \cup (B_W \setminus B)$$ in which $ \ B \cap (B_V \setminus B) = \varnothing \, $, $ \ B \cap (B_W \setminus B) = \varnothing \ $ and $ \ (B_V \setminus B) \cap (B_W \setminus B) = \varnothing \, $. In fact, $ \ (B_V \setminus B) \cap (B_W \setminus B) = (B_V \cap B_W) \setminus B = B \setminus B$.


PROOF THAT $ \ B_V \cup B_W \ $ IS A BASIS FOR $ \ V+W$.

It is clear that $ \ B_V \cup B_W \ $ spans $ \ V+W$. Let's prove that $ \ B_V \cup B_W \ $ is a linearly independent set. Let $ \ \alpha_1,...,\alpha_r \in K \ $ and $ \ u_1,...,u_r \in B_V \cup B_W \ $ be such that $$\sum_{j=1}^{r} \alpha_j \ u_j = 0_X \ \ . $$ If $ \ \left\{ u_1,...,u_r \right\} \subset B_V \ $ or $ \ \left\{ u_1,...,u_r \right\} \subset B_W$, then it is clear that $ \ \left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ 0_K \right\}$, because $ \, B_V \, $ and $ \, B_W \, $ are linearly independent sets. The other case is $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) \neq \varnothing \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) \neq \varnothing \ $.

The first possibility is $ \ \left\{ u_1,...,u_r \right\} \cap B = \varnothing \, $, that is, $ \ \left\{ u_1,...,u_r \right\} \subset (B_V \cup B_W) \setminus B \, $. Say $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) = \left\{ v_1,...,v_m \right\} \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) = \left\{ w_1,...,w_q \right\} \ $. Hence

$\begin{array}{cccr} \qquad \qquad & \qquad \qquad & \displaystyle 0_X = \sum_{j=1}^{r} \alpha_j \ u_j = \sum_{j=1}^{m} \beta_j \ v_j + \sum_{j=1}^{q} \gamma_j \ w_j \ \ , & \qquad \qquad \qquad (1) \end{array}$

where $ \ \left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q \right\} \ $ and $ \ r = m+q \, $. That is, the betas and gammas are other convenient names (and indexes) for the alphas. We can state this defining $ \ \beta_j = \alpha_{\ell} \ $ if, and only if, $ \ v_j = u_{\ell} \, $, $\forall j \in \left\{ 1, ..., m \right\}$, $\forall \ell \in \left\{ 1, ..., r \right\} \, $, and $ \ \gamma_i = \alpha_{k} \ $ if, and only if, $ \ w_i = u_{k} \, $, $\forall i \in \left\{ 1, ..., q \right\}$, $\forall k \in \left\{ 1, ..., r \right\}$. Therefore $$\sum_{j=1}^{m} \beta_j \ v_j = - \sum_{j=1}^{q} \gamma_j \ w_j \in V \cap W \ \ . $$ Consequently, since $ \, B \, $ is a basis for $ \ V \cap W$, there exists $ \ \lambda_1 , ... , \lambda_p \in K \ $ and $ \ b_1 , ... , b_p \in B \ $ such that $$\sum_{j=1}^{m} \beta_j \ v_j = \sum_{j=1}^{p} \lambda_j \ b_j \ \ . $$ Substituting in $(1)$ we have $$0_X = \sum_{j=1}^{p} \lambda_j \ b_j + \sum_{j=1}^{q} \gamma_j \ w_j \ \ . $$ But $ \ b_1 , ... , b_p , w_1 , ... , w_q \in B_W \ $ and $ \, B_W \, $ is a linearly independent set. Thus $$\lambda_1 = \ ... \ = \lambda_p = \gamma_1 = \ ... \ = \gamma_q = 0_K \ \ . $$ Substituting in $(1)$ again we have $ \displaystyle \ 0_X = \sum_{j=1}^{m} \beta_j \ v_j \ $. Now since $ \ v_1 , ... , v_m \in B_V \ $ and $ \, B_V \, $ is a linearly independent set, we conclude that $ \ \beta_1 = \ ... \ = \beta_m = 0_K \ $. Ergo $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q \right\} = \left\{ 0_K \right\} \ . $$

The second possibility is $ \ \left\{ u_1,...,u_r \right\} \cap B \neq \varnothing \ $. Say $ \ \left\{ u_1,...,u_r \right\} \cap B = \left\{ x_1,...,x_n \right\} \ $, $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) = \left\{ v_1,...,v_m \right\} \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) = \left\{ w_1,...,w_q \right\} \ $. Defining as before $ \ \beta_j = \alpha_{\ell} \ $ if, and only if, $ \ v_j = u_{\ell} \, $, $\forall j \in \left\{ 1, ..., m \right\}$, $\forall \ell \in \left\{ 1, ..., r \right\} \, $, $ \ \gamma_i = \alpha_{k} \ $ if, and only if, $ \ w_i = u_{k} \, $, $\forall i \in \left\{ 1, ..., q \right\}$, $\forall k \in \left\{ 1, ..., r \right\} \, $ and $ \ \rho_s = \alpha_{t} \ $ if, and only if, $ \ x_s = u_{t} \, $, $\forall s \in \left\{ 1, ..., n \right\}$, $\forall t \in \left\{ 1, ..., r \right\} \, $, we have $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q, \rho_1 , ... , \rho_n \right\}$$ and $ \ r = m+q+n \, $. That is, the betas, gammas and rho's are other convenient names (and indexes) for the alphas. Hence

$\begin{array}{ccr} \qquad \qquad & \qquad \displaystyle 0_X = \sum_{j=1}^{r} \alpha_j \ u_j = \sum_{j=1}^{m} \beta_j \ v_j + \sum_{j=1}^{q} \gamma_j \ w_j + \sum_{j=1}^{n} \rho_j \ x_j \ \ . & \qquad \qquad (2) \end{array}$

And we have $$\sum_{j=1}^{m} \beta_j \ v_j = - \sum_{j=1}^{q} \gamma_j \ w_j - \sum_{j=1}^{n} \rho_j \ x_j \in V \cap W \ \ .$$ Like before, since $ \, B \, $ is a basis for $ \ V \cap W$, there exists $ \ \lambda_1 , ... , \lambda_p \in K \ $ and $ \ b_1 , ... , b_p \in B \ $ such that $$\sum_{j=1}^{m} \beta_j \ v_j = \sum_{j=1}^{p} \lambda_j \ b_j \ \ . $$ Substituting in $(2)$ we have $$0_X = \sum_{j=1}^{p} \lambda_j \ b_j + \sum_{j=1}^{q} \gamma_j \ w_j + \sum_{j=1}^{n} \rho_j \ x_j \ \ . $$ But $ \ b_1 , ... , b_p , w_1 , ... , w_q, x_1, ..., x_n \in B_W \ $ and $ \, B_W \, $ is a linearly independent set. Thus $$\lambda_1 = \ ... \ = \lambda_p = \gamma_1 = \ ... \ = \gamma_q = \rho_1 = \ ... \ = \rho_n = 0_K \ \ . $$ Substituting in $(2)$ again we have $ \displaystyle \ 0_X = \sum_{j=1}^{m} \beta_j \ v_j \ $. Now since $ \ v_1 , ... , v_m \in B_V \ $ and $ \, B_V \, $ is a linearly independent set, we conclude that $ \ \beta_1 = \ ... \ = \beta_m = 0_K \ $. It follows that $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q , \rho_1 , ... , \rho_n \right\} = \left\{ 0_K \right\} \ . $$ Since all the possibilities imply $ \ \alpha_j = 0_K \, $, $\forall j \in \left\{ 1,...,r \right\}$, we proved that $ \ B_V \cup B_W \ $ is a linearly independent set. Therefore, $ \ B_V \cup B_W \ $ is a basis for $ \ V \cup W \, $.


Finally

\begin{eqnarray*} dim_K (V+W) + dim_K (V \cap W) & = & |B_V \cup B_W| + |B| \\ & = & |B \cup (B_V \setminus B) \cup (B_W \setminus B)| + |B| \\ & = & |B \sqcup (B_V \setminus B) \sqcup (B_W \setminus B)| + |B| \\ & = & |B \sqcup (B_V \setminus B) \sqcup (B_W \setminus B) \sqcup B| \\ & = & |B \sqcup (B_V \setminus B)| + |(B_W \setminus B) \sqcup B| \\ & = & |B \cup (B_V \setminus B)| + |(B_W \setminus B) \cup B| \\ & = & |B_V| + |B_W| \\ & = & dim_K(V) + dim_K(W) \ \, . \end{eqnarray*}

Gustavo
  • 2,628