I started to write this before the analogous answer by Vinicius Rodrigues above. My notation is somewhat different, so I decided to post it anyway :-)
Another partial answer (a proof for the formula, but not showing a bijection) goes this way: forget about $ \, \overline{B_V} \, $ and $ \, \overline{B_W} \, $ and let's prove that $ \ B_V \cup B_W \ $ is a basis for $ \ V+W$.
PRELUDE
If $ \ V \subset W \ $ or $ \ W \subset V \, $, then the formula holds trivially. Let $ \ V \not\subset W \ $ and $ \ W \not\subset V \, $. So, $ \ B_V \not\subset B_W \ $ and $ \ B_W \not\subset B_V \, $.
Note that $ \ B = B_V \cap B_W \ $. In fact, it is straightforward that $ \ B \subset B_V \cap B_W \ $. If it was the case that $ \ B_V \cap B_W \not\subset B \, $, then there would be some $ \ x \in B_V \cap B_W \subset V \cap W \ $ such that $ \ x \notin B$. So, $ \, x \, $ would be a nonzero linear combination of elements from $ \ B \subset (B_V \setminus \left\{ x \right\} )$, which is absurd.
Thus $ \ B_V \setminus B \neq \varnothing \ $ and $ \ B_W \setminus B \neq \varnothing \, $.
We have a union $$B_V \cup B_W = B \cup (B_V \setminus B) \cup (B_W \setminus B)$$ in which $ \ B \cap (B_V \setminus B) = \varnothing \, $, $ \ B \cap (B_W \setminus B) = \varnothing \ $ and $ \ (B_V \setminus B) \cap (B_W \setminus B) = \varnothing \, $. In fact, $ \ (B_V \setminus B) \cap (B_W \setminus B) = (B_V \cap B_W) \setminus B = B \setminus B$.
PROOF THAT $ \ B_V \cup B_W \ $ IS A BASIS FOR $ \ V+W$.
It is clear that $ \ B_V \cup B_W \ $ spans $ \ V+W$. Let's prove that $ \ B_V \cup B_W \ $ is a linearly independent set. Let $ \ \alpha_1,...,\alpha_r \in K \ $ and $ \ u_1,...,u_r \in B_V \cup B_W \ $ be such that $$\sum_{j=1}^{r} \alpha_j \ u_j = 0_X \ \ . $$ If $ \ \left\{ u_1,...,u_r \right\} \subset B_V \ $ or $ \ \left\{ u_1,...,u_r \right\} \subset B_W$, then it is clear that $ \ \left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ 0_K \right\}$, because $ \, B_V \, $ and $ \, B_W \, $ are linearly independent sets. The other case is $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) \neq \varnothing \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) \neq \varnothing \ $.
The first possibility is $ \ \left\{ u_1,...,u_r \right\} \cap B = \varnothing \, $, that is, $ \ \left\{ u_1,...,u_r \right\} \subset (B_V \cup B_W) \setminus B \, $. Say $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) = \left\{ v_1,...,v_m \right\} \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) = \left\{ w_1,...,w_q \right\} \ $. Hence
$\begin{array}{cccr}
\qquad \qquad & \qquad \qquad & \displaystyle 0_X = \sum_{j=1}^{r} \alpha_j \ u_j = \sum_{j=1}^{m} \beta_j \ v_j + \sum_{j=1}^{q} \gamma_j \ w_j \ \ , & \qquad \qquad \qquad (1)
\end{array}$
where $ \ \left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q \right\} \ $ and $ \ r = m+q \, $. That is, the betas and gammas are other convenient names (and indexes) for the alphas. We can state this defining $ \ \beta_j = \alpha_{\ell} \ $ if, and only if, $ \ v_j = u_{\ell} \, $, $\forall j \in \left\{ 1, ..., m \right\}$, $\forall \ell \in \left\{ 1, ..., r \right\} \, $, and $ \ \gamma_i = \alpha_{k} \ $ if, and only if, $ \ w_i = u_{k} \, $, $\forall i \in \left\{ 1, ..., q \right\}$, $\forall k \in \left\{ 1, ..., r \right\}$. Therefore $$\sum_{j=1}^{m} \beta_j \ v_j = - \sum_{j=1}^{q} \gamma_j \ w_j \in V \cap W \ \ . $$ Consequently, since $ \, B \, $ is a basis for $ \ V \cap W$, there exists $ \ \lambda_1 , ... , \lambda_p \in K \ $ and $ \ b_1 , ... , b_p \in B \ $ such that $$\sum_{j=1}^{m} \beta_j \ v_j = \sum_{j=1}^{p} \lambda_j \ b_j \ \ . $$ Substituting in $(1)$ we have $$0_X = \sum_{j=1}^{p} \lambda_j \ b_j + \sum_{j=1}^{q} \gamma_j \ w_j \ \ . $$ But $ \ b_1 , ... , b_p , w_1 , ... , w_q \in B_W \ $ and $ \, B_W \, $ is a linearly independent set. Thus $$\lambda_1 = \ ... \ = \lambda_p = \gamma_1 = \ ... \ = \gamma_q = 0_K \ \ . $$ Substituting in $(1)$ again we have $ \displaystyle \ 0_X = \sum_{j=1}^{m} \beta_j \ v_j \ $. Now since $ \ v_1 , ... , v_m \in B_V \ $ and $ \, B_V \, $ is a linearly independent set, we conclude that $ \ \beta_1 = \ ... \ = \beta_m = 0_K \ $. Ergo $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q \right\} = \left\{ 0_K \right\} \ . $$
The second possibility is $ \ \left\{ u_1,...,u_r \right\} \cap B \neq \varnothing \ $. Say $ \ \left\{ u_1,...,u_r \right\} \cap B = \left\{ x_1,...,x_n \right\} \ $, $ \ \left\{ u_1,...,u_r \right\} \cap (B_V \setminus B) = \left\{ v_1,...,v_m \right\} \ $ and $ \ \left\{ u_1,...,u_r \right\} \cap (B_W \setminus B) = \left\{ w_1,...,w_q \right\} \ $. Defining as before $ \ \beta_j = \alpha_{\ell} \ $ if, and only if, $ \ v_j = u_{\ell} \, $, $\forall j \in \left\{ 1, ..., m \right\}$, $\forall \ell \in \left\{ 1, ..., r \right\} \, $, $ \ \gamma_i = \alpha_{k} \ $ if, and only if, $ \ w_i = u_{k} \, $, $\forall i \in \left\{ 1, ..., q \right\}$, $\forall k \in \left\{ 1, ..., r \right\} \, $ and $ \ \rho_s = \alpha_{t} \ $ if, and only if, $ \ x_s = u_{t} \, $, $\forall s \in \left\{ 1, ..., n \right\}$, $\forall t \in \left\{ 1, ..., r \right\} \, $, we have $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q, \rho_1 , ... , \rho_n \right\}$$ and $ \ r = m+q+n \, $. That is, the betas, gammas and rho's are other convenient names (and indexes) for the alphas. Hence
$\begin{array}{ccr}
\qquad \qquad & \qquad \displaystyle 0_X = \sum_{j=1}^{r} \alpha_j \ u_j = \sum_{j=1}^{m} \beta_j \ v_j + \sum_{j=1}^{q} \gamma_j \ w_j + \sum_{j=1}^{n} \rho_j \ x_j \ \ . & \qquad \qquad (2)
\end{array}$
And we have $$\sum_{j=1}^{m} \beta_j \ v_j = - \sum_{j=1}^{q} \gamma_j \ w_j - \sum_{j=1}^{n} \rho_j \ x_j \in V \cap W \ \ .$$ Like before, since $ \, B \, $ is a basis for $ \ V \cap W$, there exists $ \ \lambda_1 , ... , \lambda_p \in K \ $ and $ \ b_1 , ... , b_p \in B \ $ such that $$\sum_{j=1}^{m} \beta_j \ v_j = \sum_{j=1}^{p} \lambda_j \ b_j \ \ . $$ Substituting in $(2)$ we have $$0_X = \sum_{j=1}^{p} \lambda_j \ b_j + \sum_{j=1}^{q} \gamma_j \ w_j + \sum_{j=1}^{n} \rho_j \ x_j \ \ . $$ But $ \ b_1 , ... , b_p , w_1 , ... , w_q, x_1, ..., x_n \in B_W \ $ and $ \, B_W \, $ is a linearly independent set. Thus $$\lambda_1 = \ ... \ = \lambda_p = \gamma_1 = \ ... \ = \gamma_q = \rho_1 = \ ... \ = \rho_n = 0_K \ \ . $$ Substituting in $(2)$ again we have $ \displaystyle \ 0_X = \sum_{j=1}^{m} \beta_j \ v_j \ $. Now since $ \ v_1 , ... , v_m \in B_V \ $ and $ \, B_V \, $ is a linearly independent set, we conclude that $ \ \beta_1 = \ ... \ = \beta_m = 0_K \ $. It follows that $$\left\{ \alpha_1 , ... , \alpha_r \right\} = \left\{ \beta_1 , ... , \beta_m , \gamma_1 , ... , \gamma_q , \rho_1 , ... , \rho_n \right\} = \left\{ 0_K \right\} \ . $$ Since all the possibilities imply $ \ \alpha_j = 0_K \, $, $\forall j \in \left\{ 1,...,r \right\}$, we proved that $ \ B_V \cup B_W \ $ is a linearly independent set. Therefore, $ \ B_V \cup B_W \ $ is a basis for $ \ V \cup W \, $.
Finally
\begin{eqnarray*}
dim_K (V+W) + dim_K (V \cap W) & = & |B_V \cup B_W| + |B| \\ & = & |B \cup (B_V \setminus B) \cup (B_W \setminus B)| + |B| \\ & = & |B \sqcup (B_V \setminus B) \sqcup (B_W \setminus B)| + |B| \\ & = & |B \sqcup (B_V \setminus B) \sqcup (B_W \setminus B) \sqcup B| \\ & = & |B \sqcup (B_V \setminus B)| + |(B_W \setminus B) \sqcup B| \\ & = & |B \cup (B_V \setminus B)| + |(B_W \setminus B) \cup B| \\ & = & |B_V| + |B_W| \\ & = & dim_K(V) + dim_K(W) \ \, .
\end{eqnarray*}