Prove
$\lim_{n\to\infty} 5^{\frac{1}{n}}=1$
Observe that we have \begin{align*} |5^{\frac{1}{n}}-1|&< \epsilon\\ 5^{\frac{1}{n}}&<\epsilon +1 \\ (\frac{1}{n})\ln{5}&<\ln{(\epsilon +1)}\\ \ln{5}&<n[\ln{(\epsilon +1)}]\\ \frac{\ln{5}}{\ln{(\epsilon +1)}}&<n \\ \end{align*}
Therefore let $\epsilon >0$ be arbitrarily given. Then choose $N> \frac{\ln{5}}{\ln{(\epsilon +1)}}$; then when $n\geq N$ that implies that
$|5^{\frac{1}{n}}-1|< \epsilon$ therefore $\lim5^{1/n}=1$.
However showing the last line i'm having trouble with now that I have my $N$.