0

Somehow I need to get $2$ as the answer but when I write

$$\displaystyle\lim_{n\to\infty}(1+2^n)^{\displaystyle \lim_{n\to\infty}{\frac{1}{n}}}=\infty^0=1$$

Jo King
  • 15

2 Answers2

5

We have $$\lim_{n\to\infty}(1+2^n)^{1/n}=2\lim_{n\to\infty}\left(1+\frac1{2^n}\right)^{1/n}=2\cdot1^0=2$$

TheSimpliFire
  • 28,020
2

Note that the following holds

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=L \implies\lim_{n\to\infty} \sqrt[n]{a_n}=L$$

let $a_n=1+2^n$ since

$$\frac{a_{n+1}}{a_n}=\frac{1+2^{n+1}}{1+2^n}=\frac{1+2\cdot 2^{n}}{1+2^n}=\frac{\frac1{2^n}+2}{\frac1{2^n}+1}\to2 $$

we have

$$\lim_{n\to\infty} \sqrt[n]{a_n}=\lim_{n\to\infty}(1+2^n)^{\frac1n}=2$$

user
  • 162,563