Here's an actual proof, missing from the typical DE book: Say $f''=f$. A little trick, inspired by the identity $D^2-I=(D-I)(D+I)$:
Let $g=f'+f$. Then $g'-g=0$.
Hence $$(e^{-x}g(x))'=0,$$so $e^{-x}g(x)$ is constant: $$g(x)=c_1e^x,$$
or $$f'+f=c_1e^x.$$Repeat the same trick, multiplying by $e^x$:
$$(e^xf(x))'=c_1e^{2x},$$so $$e^xf(x)=\frac12c_1e^{2x}+c_2;$$hence $$f(x)=\frac12c_1e^x+c_2e^{-x}.$$
Exercise Use the same method to find all the solutions to $f''-2f'+f=0.$ (Hint: $D^2-2D+I=(D-I))(D-I)$.)
(That's one of the things I like about doing it this way - it works the same regardless of whether "$r_1=r_2$".)