I am stuck on the following exercise in Stein & Shakarchi's book on Fourier analysis.
Exercise 10a, chapter 4: Let $\{\xi_n \}$ be a equidistributed sequence on $[0,1)$. If $f$ is a continuous periodic function with period 1 and $\int_{0}^1 f(x) dx =0$, then: $$ \lim_{N\rightarrow\infty} \frac{1}{N} \sum^{N}_{n=1} f(x+\xi_n) = 0,\qquad \mbox{uniformly in } x\in[0,1).$$
My partial solution: We must show that for every $\epsilon>0$, there exists a $N_1\in\mathbb{N}$ for which: $$ \sup_{x\in[0,1)} \left | \frac{1}{N} \sum^{N}_{n=1} f(x+\xi_n) \right | < K\epsilon, \qquad \forall N \geq N_1. $$ Choose a trigonometric polynomial $P$ with $\int_{0}^1 P(x) dx =0$ and $|f(x)-P(x)|<\epsilon$ for all $x\in[0,1)$. This is possible because continuous functions on the circle can be uniformly approximated by trigonometric polynomials. Using the common trick: $$ \sup_{x\in[0,1)} \left | \frac{1}{N} \sum^{N}_{n=1} f(x+\xi_n) \right | \leq \sup_{x\in[0,1)} \left | \frac{1}{N} \sum^{N}_{n=1} f(x+\xi_n) -P(x+\xi_n)\right| + \left| \frac{1}{N} \sum^{N}_{n=1} P(x+\xi_n) \right | $$ we see that: $$ \sup_{x\in[0,1)} \left | \frac{1}{N} \sum^{N}_{n=1} f(x+\xi_n) -P(x+\xi_n)\right| \leq \frac{1}{N} \sum^{N}_{n=1} \sup_{x\in[0,1)} \left | f(x+\xi_n) -P(x+\xi_n)\right| \leq \epsilon. $$ Furthermore, writing: $$ P(x) = \sum^{M}_{k=-M} c_k e^{2\pi i kx} $$ we obtain: \begin{align} \sup_{x\in[0,1)} \left | \frac{1}{N} \sum^{N}_{n=1} P(x+\xi_n) \right | & = &\sup_{x\in[0,1)} \left | \sum^{M}_{k=-M} c_k e^{2\pi ikx} \left(\frac{1}{N} \sum^{N}_{n=1} e^{2\pi i k\xi_n} \right) \right |\\ & \leq & \left(\sup_{x\in[0,1)} \sum^{M}_{k=-M} |c_k e^{2\pi i kx} | \right) \left(\max_{-M \leq k \leq M} \left|\frac{1}{N} \sum^{N}_{n=1} e^{2\pi i k\xi_n} \right|\right) \end{align} By Weyl criterion, we can choose $N_1\in \mathbb{N}$ such that: $$ \left(\max_{-M \leq k \leq M} \left|\frac{1}{N} \sum^{N}_{n=1} e^{2\pi i k\xi_n} \right|\right) \leq \epsilon\qquad \forall N_1 \geq N.$$
What I am stuck on: I can proceed by bounding: $$\left(\sup_{x\in[0,1)} \sum^{M}_{k=-M} |c_k e^{2\pi i kx} | \right) \leq \sum^{M}_{k=-M} |c_k | := C $$ And we would have: $$ K =1+C$$ But $C=C(\epsilon)$ and can grow unboundedly as $\epsilon\rightarrow 0$. So the way my proof is set up is simply not correct. Can anybody tell me what I should be doing instead?