In this post, Cesaro mean of Cesaro means, benny asked about a bounded sequence for which the Cesàro mean diverges, but the Cesàro mean of the Cesàro mean converges (which still isn't answered completely). To revive this topic, I'd like to ask a related but more general question:
Given a bounded sequence of real numbers $(x_{n})_{n\in\mathbb{N}}:=x$, does there always exist a positive integer $n$ such that $C^{n}(x)$ converges?
Where $C^{n}$ denotes the $n$-th iteration of the Cesàro mean $C$, which is defined to be $$C(y)= \Bigg(\sum_{k=1}^{n} \frac{y_{k}}{n}\Bigg)_{n\in\mathbb{N}} $$ for any real number sequence $y:=(y_{n})_{n\in\mathbb{N}}$.