-1

If $f$ belongs to $C[-\pi, \pi]$ & $\int_{-\pi}^{\pi}\ x^nf(x) =0$ for all non negative integer n. Then $f$ will be identically $0$.

How to do it by stone-weierstrass theorem?

Can anyone help me?

cmi
  • 3,479

1 Answers1

1

Using Stone-Weierstrass theorem, you know that it exists $\left(P_n\right)_{n \in \mathbb{N}}$ a sequence of polynomial that uniformly converges to $f$. Hence you can write that for all $\ n \in \mathbb{N}$ and for all $\ x \in \left[-\pi,\pi\right]$ $$ \left|f(x)P_n(x)-f^2(x)\right|=\left|f(x)\right|\left|P_n(x)-f(x)\right| \leq \left\|f\right\|_{\infty, \left[-\pi,\pi\right]}\left\|P_n-f\right\|_{\infty, \left[-\pi,\pi\right]} $$ You know that second term tends to $0$ as it is UNIFORMLY convergent. So $$\left\|fP_n-f^2\right\|_{\infty, \left[-\pi,\pi\right]} \underset{n \rightarrow +\infty}{\rightarrow}0$$ So we have shown that the sequence $\left(fP_n\right)_{n \in \mathbb{N}}$ converges uniformy to $f^2$. I let you conclude ( on $\left[0, \pi\right]$ )starting from there. ( that's not obvious to think to do that )

Atmos
  • 7,455