-2

Let $f\colon\mathbb{R} \to \mathbb{R}$ be a differentiable function satisfying

  1. $f(0) = 0$

  2. $f'(x) > f(x)$ for all $x\in\mathbb R$.

Prove that $f(x) > 0$ for all $x > 0$.

I considered $f'(0) > f(0) = 0$ Let f(x) < 0 for all x > 0 How do I apply indeterminate property and Rolle's theorem to this?

1 Answers1

4

Hint: consider the function $g(x) = e^{-x} f(x)$.

Rigel
  • 14,634