In section 5.7 (The Grassman Ring) of Hoffman and Kunze's Linear Algebra, the authors write (on page 174)
The proof of the lemma following equation $(5\text{-}36)$ shows that for any $r$-linear form $L$ and any permutation $\sigma$ of $\{1,\dots,r\}$ $$\pi_r(L_\sigma) = \operatorname{sgn}{\sigma}\ \pi_r(L)$$
It is not clear to me how the given equation follows from the proof of the lemma following equation $(5\text{-}36)$. Can someone explain the above statement to me?
The relevant lemma and notations are given below.
Notations and definitions
Let $V$ be a free module of rank $n$ over a commutative ring $K$ with identity. We denote the space of all $r$-linear forms on $V$ by $M^r(V)$ and the space of all alternating $r$-linear forms by $\Lambda^r(V)$. For $L \in M^r(V)$ and any permutation $\sigma$ of $\{1,\dots,r\}$, we obtain another $r$-linear function $L_\sigma$ by defining $$L_\sigma(\alpha_1,\dots,\alpha_r) = L(\alpha_{\sigma 1},\dots,\alpha_{\sigma r})$$ for all $(\alpha_1,\dots,\alpha_r) \in V^r$. For each $L \in M^r(V)$, we define the alternating $r$-linear function $\pi_r L$ by $$\pi_r L = \sum_\sigma (\operatorname{sgn} \sigma) L_\sigma$$ where the sum is over all permutations $\sigma$ of $\{1,\dots,r\}$.
Lemma. $\pi_r$ is a linear transformation from $M^r(V)$ into $\Lambda^r(V)$. If $L$ is in $\Lambda^r(V)$ then $\pi_r L = r! L$.
Proof. Let $\tau$ be any permutation of $\{1,\dots,r\}$. Then $$ \begin{align} (\pi_r L)(\alpha_{\tau 1},\dots,\alpha_{\tau r}) &= \sum_\sigma (\operatorname{sgn} \sigma)\ L(\alpha_{\tau \sigma 1}, \dots, \alpha_{\tau \sigma r}) \\ &= (\operatorname{sgn} \tau) \sum_\sigma (\operatorname{sgn} \tau\sigma)\ L(\alpha_{\tau \sigma 1},\dots,\alpha_{\tau \sigma r}). \end{align} $$ As $\sigma$ runs (once) over all permutations of $\{1,\dots,r\}$, so does $\tau\sigma$. Therefore, $$ (\pi_r L)(\alpha_{\tau 1},\dots,\alpha_{\tau r}) = (\operatorname{sgn} \tau)(\pi_r L)(\alpha_1,\dots,\alpha_r). $$ Thus, $\pi_r L$ is an alternating form.
If $L$ is in $\Lambda^r(V)$, then $L(\alpha_{\sigma 1},\dots,\alpha_{\sigma r}) = (\operatorname{sgn} \sigma) L(\alpha_1,\dots,\alpha_r)$ for each $\sigma$; hence $\pi_r L= r! L$.
$\pi_r (L_\tau) (\alpha_1 ,..., \alpha_r) = (\sum_{\sigma} (sgn \sigma) (L_{\tau})\sigma) (\alpha_1 ,..., \alpha_r) = (\sum{\sigma} (sgn \sigma) (L_{\sigma \tau})) (\alpha_1 ,..., \alpha_r) = (\sum_{\sigma} (sgn \sigma) (L_{\sigma})) (\alpha_{\tau 1} ,..., \alpha_ {\tau r}) = (\pi_r L) (\alpha_{\tau 1} ,..., \alpha_ {\tau r}) $ . Note that according to the author, $(\pi_r L)\tau (\alpha_1,...,\alpha_r) \neq (\pi_r L) (\alpha{\tau 1},...,\alpha_{\tau r})$, I admit that it's confusing at first, but it becomes clear after the explanation in the next chapter.
– hteica Apr 06 '20 at 12:32