First answer
I regret to inform you that the conjectured $a_m$ isn't always a rational number. Good news is, the conjectured sum does indeed have a closed form in terms of Euler sums.
Define the harmonic zeta function $\mathcal{H}^m(s)=\sum_{k=1}^{\infty}\frac{H_k^m}{k^s}$. The general sum has the closed form
$$\begin{split}\sum_{n=1}^{\infty}\frac{H_n^m-(\log n+\gamma)^m}{n}=& -\frac{m}{m+1}\gamma^{m+1}+(-1)^{m+1}\frac{\zeta(m+1)}{m+1}+\sum_{k=0}^{m-2}\binom{m+1}{k+1}\frac{(-1)^{k+m}\mathcal{H}^{k+1}(m-k)}{m+1} \\ &
-\sum_{k=1}^{m}\binom{m}{k}\gamma_k\gamma^{m-k}\end{split}$$
Where $\zeta(s)$ denotes the Riemann zeta function and $\gamma_n$ denotes the Stieltjes constants .
Examples
$$ \sum_{n=1}^{\infty}\frac{H_n-\log n-\gamma}{n}=\frac{\zeta(2)}{2}-\frac{\gamma^2}{2}-\gamma_1$$
$$ \sum_{n=1}^{\infty}\frac{H_n^2-(\log n+\gamma)^2}{n}=\frac{5\zeta(3)}{3}-\frac{2\gamma^3}{3}-2\gamma\gamma_1-\gamma_2$$
$$ \sum_{n=1}^{\infty}\frac{H_n^3-(\log n+\gamma)^3}{n}=-\frac{3}{4}\gamma^4+\frac{43}{8}\zeta(4)-3\gamma^2\gamma_1-3\gamma\gamma_2-\gamma_3$$
$$ \sum_{n=1}^{\infty}\frac{H_n^4-(\log n+\gamma)^4}{n}=-\frac{4}{5}\gamma^5+\frac{79}{5}\zeta(5)+3\zeta(2)\zeta(3)-4\gamma^3\gamma_1-6\gamma^2\gamma_2-4\gamma\gamma_3-\gamma_4$$
As you can see, the first values of $a_n$ was rational because the Euler sums $\mathcal{H}(2)$ and $\mathcal{H}(3),\mathcal{H}^2(2)$ could be written in terms of $\zeta(3)$ and $\zeta(4)$ respectively in terms of rational numbers.
Edit 11/8/2024
Lemma 1
\begin{equation}H_n=\log(n)+\gamma +\frac{1}{2n}-\sum_{a=2}^k \frac{B_{a}}{an^a} +\int_n^{\infty} \frac{\tilde B_k(x)}{x^{k+1}}\, dx\end{equation}
Where $B_n$ are the Bernoulli numbers and $\tilde B_n(x)$ is the $n$-th periodic Bernoulli polynomial.
Proposition 1
\begin{equation}\mathcal{H}^{m}({s})=\sum_{j=0}^m \binom{m}{j}\frac{\gamma^{m-j}\Gamma(j+1)}{(s-1)^{j+1}}+\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}{}_m\tilde\gamma_n(s-1)^n\end{equation}
Where ${}_m\tilde\gamma_n$ is the corresponding coefficient.
The above proposition can be proved by recursively applying Lemma 1
Lemma 2
$${}_m\tilde\gamma_n=\lim_{N\to \infty}\left[\sum_{k=1}^N \frac{H^m_k \log^n(k)}{k}-\sum_{j=0}^{m} \binom{m}{j}\gamma^{m-j}\frac{\log^{n+j+1}(N)}{n+j+1}\right]$$
At $N\to \infty$, the following asymptotic formula holds
Proposition 2$$\sum_{n=1}^N \frac{H_n^{m-1}}{n}\sim \frac{H_N^m}{m}+\frac{(-1)^m}{m}\zeta(m)+\sum_{k=1}^{m-2}\binom{m}{k}\frac{(-1)^{m+k}\mathcal{H}^{k}({m-k})}{m}$$
By utilizing the above formulas, we can find the constant term of $\mathcal H^m$ around $s=1$
Theorem $${}_m\tilde\gamma_0=\frac{\gamma^{m+1}}{m+1}+(-1)^{m+1}\frac{\zeta(m+1)}{m+1}+\sum_{k=0}^{m-2} \binom{m+1}{k+1} \frac{(-1)^{k+m} \mathcal{H}^{k+1}({m-k})}{m+1}$$
Finally, by writing $s_m$ as $\displaystyle \sum_{n=1}^{\infty}\frac{H_n^m-(\log n+\gamma)^m}{n^s}$ and expanding it around $s=1$, we get the closed form of $s_m$
Edit 20/8/2024
I was being careful not to disclose full details of my derivation because this was in my paper, and I don't want something like this to happen. After consideration, I feel like answering a 6 years old question is probably more important. Anyways, here are the proofs
Lemma 1 is well known, it is the Euler Macluarin expansion of harmonic numbers.
Proof of Proposition 1.
Consider multiplying $\frac{H_n}{n^s}$ on both sides of lemma 1 and sum both sides.
$$\mathcal{H}(s)=-\zeta'(s)+\gamma \zeta(s)+\frac{1}{2}\zeta({s+1})-\sum_{a=2}^k \frac{B_{a}}{a} \zeta({a+s}) +\sum_{n\geq 1}\frac{1}{n^s}\int_n^{\infty} \frac{\tilde B_k(x)}{x^{k+1}}\, dx$$
By the Laurent expansion of the Riemann zeta function, we get \begin{equation}\mathcal{H}(s)=\frac{1}{(s-1)^2}+\frac{\gamma}{s-1}+O(1)\end{equation}
Similarly, by multiplying $\frac{H_n^{m}}{n^s}$ on both sides of lemma 1 and summing both sides, we get \begin{equation}\mathcal{H}^{m+1}(s)=-{\mathcal{H}^{m}}'(s)+\mathcal{H}^m(s)+\cdots\end{equation}
We will prove Proposition 1 by induction. We already proved the case for $m=1$.
$$
\begin{split}\text{RHS}& = -\frac{d}{ds}\sum_{j=0}^m \binom{m}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j}+\gamma\sum_{j=0}^m \binom{m}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j}+O(1) \\ &
=\sum_{j=0}^m \binom{m}{j}\frac{\Gamma(j+2)}{(s-1)^{j+2}}\gamma^{m-j}+\sum_{j=0}^{m} \binom{m}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+O(1) \\ &
=\sum_{j=1}^{m+1} \binom{m}{j-1}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+\sum_{j=0}^{m} \binom{m}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+O(1) \\ &
=\sum_{j=0}^{m+1} \binom{m}{j-1}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+\sum_{j=0}^{m+1} \binom{m}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+O(1) \\ &
=\sum_{j=0}^{m+1}\underbrace{\left[ \binom{m}{j-1}+ \binom{m}{j}\right]}_{\binom{m+1}{j}}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+O(1) \\ &
=\sum_{j=0}^{m+1}\binom{m+1}{j}\frac{\Gamma(j+1)}{(s-1)^{j+1}}\gamma^{m-j+1}+O(1) =\text{LHS}
\end{split}$$
This proves Proposition 1
Proof of Lemma 2. We have
\begin{equation}
\begin{split}{}_{m}\tilde\gamma_{n} & =\lim_{s\to 0^-}\frac{d^n}{ds^n}\left\{\mathcal{H}^{m}({1-s})-\sum_{j=0}^m \binom{m}{j}\frac{\gamma^{m-j}(-1)^{j+1}}{s^{j+1}}\Gamma(j+1)\right\} \\ &
=\lim_{s\to 0^-}\left\{\sum_{k=0}^{\infty} \frac{H^m_k}{k^{1-s}}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\frac{\gamma^{m-j}(-1)^{n+j+1}}{s^{j+1+n}}(j+1)^{\overline{n}}\Gamma(j+1)\right\}\\ &
=\lim_{s\to 0^-}\left\{\sum_{k=0}^{\infty} \frac{H^m_k}{k^{1-s}}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}{\underbrace{\frac{(-1)^{n+j+1}}{s^{j+1+n}}\Gamma(j+n+1)}_{\textstyle \int_1^{\infty}\log^{j+n}(t)t^{s-1}\, dt }}\right\} \\ &
=\lim_{s\to 0^-}\left\{\sum_{k=0}^{\infty} \frac{H^m_k}{k^{1-s}}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}\int_1^{\infty}\log^{j+n}(t)t^{s-1}\, dt\right\} \\ &
=\lim_{s\to 0^-}\lim_{N\to\infty}\left\{\sum_{k=0}^{N} \frac{H^m_k}{k^{1-s}}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}\int_1^{N}\log^{j+n}(t)t^{s-1}\, dt\right\} \\ &
=\lim_{N\to\infty}\lim_{s\to 0^-}\left\{\sum_{k=0}^{N} \frac{H^m_k}{k^{1-s}}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}\int_1^{N}\log^{j+n}(t)t^{s-1}\, dt\right\} \\ &
=\lim_{N\to\infty}\left\{\sum_{k=0}^{N} \frac{H^m_k}{k}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}\int_1^{N}\log^{j+n}(t)\, \frac{dt}{t}\right\} \\ &
=\lim_{N\to\infty}\left\{\sum_{k=0}^{N} \frac{H^m_k}{k}\log^n(k)-\sum_{j=0}^m \binom{m}{j}\gamma^{m-j}\frac{\log^{j+n+1}(N)}{j+n+1}\right\}
\end{split}
\end{equation}
Proof of Proposition 2.
I will use $a_n\approx b_n$ to denote that $\lim(a_n-b_n)=0$. By summation by parts, we have
$$\begin{split}\sum_{n=1}^N \frac{H_n^m}{n} & =H_{N+1}^{m}H_N-\sum_{n=1}^N H_n \Delta H_n^m \\ &=H_{N+1}^{m+1}-\frac{H^m_{N+1}}{N+1}+\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{m-k}\sum_{n=1}^N \frac{H^k_{n+1} H_n}{(n+1)^{m-k}}\\ & =H_{N+1}^{m+1}-\frac{H^m_{N+1}}{N+1}+\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{m-k}\left[\sum_{n=1}^{N+1} \frac{H_n^{k+1}}{n^{m-k}}-\sum_{n=1}^{N+1} \frac{H_n^k}{n^{m-k+1}}\right] \\ & =H_{N+1}^{m+1}-\frac{H^m_{N+1}}{N+1}+\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{m-k}\sum_{n=1}^{N+1} \frac{H_n^{k+1}}{n^{m-k}}-\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{m-k}\sum_{n=1}^{N+1} \frac{H_n^k}{n^{m-k+1}}\\ & \approx H_{N+1}^{m+1}+(-m)\sum_{n=1}^N \frac{H_n^m}{n} +\sum_{k=0}^{m-2}\binom{m}{k}(-1)^{m-k}\mathcal{H}^{k+1}{(m-k)}-\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{m-k}\mathcal{H}^{k}{(m-k+1)}\\
\implies (m+1)\sum_{n=1}^N \frac{H_n^m}{n} & \approx H_{N+1}^{m+1}+\sum_{k=0}^{m-2} \binom{m}{k}(-1)^{k+m}\mathcal{H}^{k+1}{(m-k)}-\sum_{k=-1}^{m-2}\binom{m}{k+1}(-1)^{k+m+1}\mathcal{H}^{k+1}{(m-k)} \\ & = H_{N+1}^{m+1}+(-1)^{m+1} \zeta(m+1)+\sum_{k=0}^{m-2}{\underbrace{\left[\binom{m}{k}+\binom{m}{k+1}\right]}_{\textstyle \binom{m+1}{k+1}}}(-1)^{k+m}\mathcal{H}^{k+1}{(m-k)}\\
\implies \sum_{n=1}^N \frac{H_n^m}{n} & = \frac{H_{N+1}^{m+1}}{m+1}+(-1)^{m+1}\frac{\zeta(m+1)}{m+1}+\sum_{k=0}^{m-2} \binom{m+1}{k+1} \frac{(-1)^{k+m} \mathcal{H}^{k+1}{(m-k)}}{m+1}\end{split}$$
Using Proposition 2 on Lemma 2 by writing $\frac{H_{N+1}^{m+1}}{m+1}$ using the asymptotic expansion $H_n=\log(n)+\gamma+O(\frac{1}{n})$ gives theorem.
Lastly, we write $s_m$ as $\sum_{n=1}^{\infty}\frac{H_n^m-(\log n+\gamma)^m}{n^s}$ and consider the Laurent expansion at $s=1$, binomial expand $(\log n+\gamma)^m$ and using theorem gives the desired closed form.
Also, my notation of ${}_m\tilde\gamma_0$ is from the paper link in your comment.
– Aug 14 '24 at 13:30