This answer uses that
$$F_nF_{m}=\frac 15(L_{m+n}-(-1)^nL_{m-n})\tag1$$
$$L_{n-1}+L_{n+1}=5F_n\tag2$$
$$F_{2n}=F_{n+1}^2-F_{n-1}^2=(F_{n+1}-F_{n-1})(F_{n+1}+F_{n-1})=F_n(F_{n+1}+F_{n-1})\tag3$$
$$\sum_{i=1}^{n}F_{2i-1}^2=\frac{1}{5}\left(3F_{2n}^2+2F_{2n-1}^2-4F_{2n-2}F_{2n}+2n-2\right)\tag4$$
$$F_{m+1}F_{n+1}-F_{m-1}F_{n-1}=F_{m+n}\tag5$$
$$3F_{n+2}-2F_n=F_{n+2}+2(F_{n+2}-F_{n})=F_{n+2}+2F_{n+1}=F_{n+3}+F_{n+1}\tag6$$
The proof for $(2)$ can be seen here.
The proof for $(3)$ can be seen here.
The proof for $(4)$ can be found in this answer.
The proofs for $(1)(5)$ are written at the end of the answer.
Using $(1)(2)(3)(4)(5)(6)$, we have
$$\small\begin{align}&\sum_{x=1}^{1000}F_xF_{x+2017}\\\\&\stackrel{(1)} =\frac 15\left(\sum_{x=1}^{1000}L_{2x+2017}\right)-\frac{L_{2017}}{5}\sum_{x=1}^{1000}(-1)^x\\\\&=\frac 15\sum_{x=1}^{1000}L_{2x+2017}\\\\&=\frac 15\sum_{x=1}^{500}\left(L_{4x+2015}+L_{4x+2017}\right)\\\\&\stackrel{(2)} =\sum_{x=1}^{500}F_{4x+2016}\\\\&\stackrel{(3)} =\sum_{x=1}^{500}(F_{2x+1009}^2-F_{2x+1007}^2)\\\\&=\sum_{i=1}^{1005}F_{2i-1}^2-\sum_{i=1}^{505}F_{2i-1}^2-\sum_{i=1}^{1004}F_{2i-1}^2+\sum_{i=1}^{504}F_{2i-1}^2
\\\\&\stackrel{(4)} =\frac 15\left(3F_{2010}^2+2F_{2009}^2-4F_{2008}F_{2010}+2008\right)-\frac 15\left(3F_{1010}^2+2F_{1009}^2-4F_{1008}F_{1010}+1008\right)\\\\&\qquad -\frac 15\left(3F_{2008}^2+2F_{2007}^2-4F_{2006}F_{2008}+2006\right)+\frac 15\left(3F_{1008}^2+2F_{1007}^2-4F_{1006}F_{1008}+1006\right)
\\\\&=\frac 15\left(3(F_{2010}^2-F_{2008}^2)-3(F_{1010}^2-F_{1008}^2)+2(F_{2009}^2-F_{2007}^2)-2(F_{1009}^2-F_{1007}^2)\right)\\\\&\qquad +\frac 15\left(-4(F_{2008}F_{2010}-F_{2006}F_{2008})+4(F_{1008}F_{1010}-F_{1006}F_{1008})\right)
\\\\&\stackrel{(3)(5)} =\frac 15\left(3F_{4018}-3F_{2018}+2F_{4016}-2F_{2016}-4F_{4016}+4F_{2016}\right)\\\\&=\frac 15\left((3F_{4018}-2F_{4016})-(3F_{2018}-2F_{2016})\right)\\\\&\stackrel{(6)} =\frac 15\left(F_{4019}+F_{4017}-F_{2019}-F_{2017}\right)\end{align}$$
So, $a+b+c+d+e=4019+4017+2019+2017+5=12077$.
Finally, let us prove
$$F_nF_{m}=\frac 15(L_{m+n}-(-1)^nL_{m-n})\tag1$$
$$F_{m+1}F_{n+1}-F_{m-1}F_{n-1}=F_{m+n}\tag5$$
Proof for $(1)$ :
Let us prove $(1)$ by induction on $n$.
It holds for $n=0$ since the both sides are equal to $0$.
It holds for $n=1$ since
$$F_1F_{m}=F_m=\frac 15(L_{m+1}+L_{m-1})=\frac 15(L_{m+1}-(-1)^1L_{m-1})$$
where we used $(2)$.
Suppose that it holds for $n-1,n$.
Then,
$$\begin{align}F_{n+1}F_m&=(F_n+F_{n-1})F_m\\\\&=F_nF_m+F_{n-1}F_m\\\\&=\frac 15(L_{m+n}-(-1)^nL_{m-n})+\frac 15(L_{m+n-1}-(-1)^{n-1}L_{m-(n-1)})\\\\&=\frac 15(L_{m+n}+L_{m+n-1}-(-1)^{n+1}(-L_{m-n}+L_{m-n+1}))\\\\&=\frac 15(L_{m+n+1}-(-1)^{n+1}L_{m-(n+1)})\qquad\blacksquare\end{align}$$
Proof for $(5)$ :
Let us prove by induction on $n$ that
$$F_{m+1}F_{n+1}-F_{m-1}F_{n-1}=F_{m+n}\tag5$$
It holds for $n=1$ since $F_{m+1}F_{1+1}-F_{m-1}F_{1-1}=F_{m+1}$.
It holds for $n=2$ since
$$F_{m+1}F_{2+1}-F_{m-1}F_{2-1}=2F_{m+1}-F_{m-1}=F_{m+1}+F_{m}=F_{m+2}$$
Suppose that it holds for some $n-1,n$.
Then,
$$\begin{align}F_{m+1}F_{n+2}-F_{m-1}F_{n}&=F_{m+1}(F_{n+1}+F_n)-F_{m-1}(F_{n-1}+F_{n-2})\\\\&=(F_{m+1}F_{n+1}-F_{m-1}F_{n-1})+(F_{m+1}F_n-F_{m-1}F_{n-2})\\\\&=F_{m+n}+F_{m+n-1}\\\\&=F_{m+n+1}\qquad\blacksquare\end{align}$$