Let $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ and let $\theta_{ij}$ be the angle between vectors $x_i$ and $x_j$. Solve
$$\max_{x_1, \dots,\, x_n} \min_{1\le i<j\le n} \theta_{ij}$$
That is, find the largest possible value of the minimal angle between every pair of vectors.
My attempt
Wlog. we can assume $\|x_i\|_2 = 1$. Since $0\le \theta_{ij}\le \pi$, consider the following problem $$ \begin{split} \min_{x_1, \ldots,\, x_n} \max_{1\le i<j\le n} \quad & x_i^Tx_j \\ \text{s.t.} \quad & x_i^Tx_i = 1 ,\\ \end{split} $$ which is further equivalent to $$ \begin{split} \min_{x_1, \ldots,\, x_n,\, t} \quad & t \\ \text{s.t.} \quad & t \ge x_i^T x_j, \quad \forall i \ne j \\ & x_i^T x_i = 1. \end{split} $$ I know that the optimal result is actually $x_1$, $\ldots\,$, $x_n$ evenly distributed in any $\mathbb{R}^{n-1}$ subspace, for example,
when $n=2$, $x_1 = -x_2$ (evenly distributed in 1-dim subspace), $\theta^* = \pi$;
and when $n=3$, $x_1$, $x_2$ and $x_3$ are vertexes of equilateral triangle (evenly distributed in 2-dim subspace), $\theta^* = 2\pi/3$.