The only examples I know of valuations of rank $n>1$ are of the following type:
Let $K$ be a field and consider the field of rational functions on $n$ variables $K(x_1,\dots,x_n)$ for some $n\in\mathbb{N}$. Define $|\cdot|:K(x_1,\dots,x_n)\to\mathbb{Z}^n$ by $|a|=(0,0,\dots,0)$ for all $a\in\mathbb{K}$, $a\neq0$ and $|x_k^m|=(r_1,\dots,r_n)$ where $r_k=m$ and $r_i=0$ for $i\neq k$.
Is it possible to define a valuation of rank $n>1$ in a smaller field like $\mathbb{R}$, $\mathbb{C}$ or $\mathbb{Q_p}$?