$$\sum_{n=1}^\infty\sin^2\frac\pi n$$ How can you show that this series converges using the limit comparison test?
Asked
Active
Viewed 50 times
1 Answers
2
The inequality that $|\sin u|\leq |u|$, so $\left|\sin\left(\dfrac{\pi}{n}\right)\right|^{2}\leq\dfrac{\pi^{2}}{n^{2}}$.
Other method: $\lim_{n\rightarrow\infty}\dfrac{\sin^{2}(\pi/n)}{(\pi/n)^{2}}=1$.
user284331
- 56,315