For 2. notice that
$$\int_{2}^{12}\frac{\sqrt{1+4x}}{2x}dx=\int_{2}^{12}\frac{1+4x}{2x\sqrt{1+4x}}=\frac{1}{2}\left(\int_{2}^{12}\frac{1}{x\sqrt{1+4x}}dx+4\int_{2}^{12}\frac{dx}{\sqrt{1+4x}}\right).$$
Now the second integral is pretty easy
$$2\int_{2}^{12}\frac{dx}{\sqrt{1+4x}}=\left[\sqrt{1+4x}\right]_{2}^{12}=4,$$
for the first one instead
$$\int_{2}^{12}\frac{dx}{2x\sqrt{1+4x}}=\frac{1}{2}\int_{2}^{12}\frac{dx}{x\sqrt{1+\left(2\sqrt{x}\right)^2}},$$
let $2\sqrt{x}=\sinh y$, so $x=\frac{\sinh^2 y}{4}$ and $dx=\frac{\cosh y \sinh y}{2}\ dy$. Hence
$$\int_{2}^{12}\frac{dx}{2x\sqrt{1+4x}}=\frac{1}{2}\int_{\sinh^{-1}{2\sqrt2}}^{\sinh^{-1}{4\sqrt3}}\frac{\frac{\cosh y \sinh y}{2}}{\frac{\sinh^2}{4} y\sqrt{1+\sinh^2 y}}dy=\int_{\sinh^{-1}{2\sqrt2}}^{\sinh^{-1}{4\sqrt3}}\frac{dy}{\sinh y}=$$
$$=2\int_{\sinh^{-1}{2\sqrt2}}^{\sinh^{-1}{4\sqrt3}}\frac{e^y}{e^{2y}-1}dy.$$
Now let $e^y=z$, so $e^y\ dy=dz$
$$2\int_{\sinh^{-1}{2\sqrt2}}^{\sinh^{-1}{4\sqrt3}}\frac{e^y}{e^{2y}-1}dy=2\int_{\eta}^{\psi}\frac{dz}{z^2-1},$$
where $\eta=e^{\sinh^{-1}{2\sqrt2}}$ and $\psi={e^{\sinh^{-1}{4\sqrt3}}}.$
$$2\int_{\eta}^{\psi}\frac{dz}{z^2-1}=\ln\left|\frac{z-1}{z+1}\right|_{\eta}^{\psi}=\ln\left|\frac{e^y-1}{e^y+1}\right|_{\sinh^{-1}{2\sqrt2}}^{\sinh^{-1}{4\sqrt3}}=$$
$$=\ln\left|\frac{e^{\sinh^{-1}{2\sqrt{x}}}-1}{e^{\sinh^{-1}{2\sqrt{x}}}+1}\right|_{2}^{12},$$
so
$$\int_{2}^{12}\frac{\sqrt{1+4x}}{2x}dx==\ln \left|\frac{e^{\sinh^{-1}{2\sqrt{12}}}-1}{e^{\sinh^{-1}{2\sqrt{12}}}+1}\right|-\ln \left|\frac{e^{\sinh^{-1}{2\sqrt{2}}}-1}{e^{\sinh^{-1}{2\sqrt{2}}}+1}\right|+4.$$