We have $$\lfloor x \rfloor=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta(s)\frac{x^{s}}{s}ds\;\;\;(c>1)$$ If I apply residue theorem I get: $$\text{Res}\left(\frac{x^s \zeta (s)}{s},0\right)=-\frac{1}{2}$$ $$\text{Res}\left(\frac{x^s \zeta (s)}{s},1\right)=x$$ So I get: $$\lfloor x \rfloor=x-\frac{1}{2}$$ Which is obviously not correct.
What am I doing wrong?