(Inspired by this post.) Given the tribonacci constant $\Phi_3$, the tetranacci constant $\Phi_4$, etc. How do prove that,
$$\sum_{n=0}^\infty \binom{4n}{n}\frac{1}{(3n+1)\,2^{4n+1}}=\frac{1}{2}{\;}_3F_2 \left(\frac14,\frac24,\frac34; \color{blue}{\frac23,\frac43};\frac{4^4}{\color{red}{2^4}\,3^3} \right)=\frac1{\Phi_3}$$
$$\sum_{n=0}^\infty \binom{5n}{n}\frac{1}{(4n+1)\,2^{5n+1}}=\frac{1}{2}{\;}_4F_3 \left(\frac15,\frac25,\frac35,\frac45; \color{blue}{\frac24,\frac34,\frac54};\frac{5^5}{\color{red}{2^5}\,4^4} \right)=\frac1{\Phi_4}$$
$$\sum_{n=0}^\infty \binom{6n}{n}\frac{1}{(5n+1)\,2^{6n+1}}=\frac{1}{2}{\;}_5F_4 \left(\frac16,\frac26,\frac36,\frac46,\frac56; \color{blue}{\frac25,\frac35,\frac45,\frac65};\frac{6^6}{\color{red}{2^6}\,5^5} \right)=\frac1{\Phi_5}$$
and so on? And what is the corresponding hypergeometric formula for $\displaystyle \frac1{\Phi_2}$ with golden ratio $\Phi_2$?
(Courtesy of Jack D'Aurizio) By the Lagrange inversion theorem, a solution to, $$x^k-x+1=0$$ is given by, $$x=\sum_{n=0}^\infty \binom{kn}{n}\frac{1}{(k-1)n+1}$$
Similarly, given the general polynomial of the $k$-nacci constants as, $$x^k(2-x)-1=0$$ how do we show that, $$\frac1{x}=\frac1{\Phi_k}=\sum_{n=0}^\infty \binom{(k+1)n}{n}\frac{1}{(kn+1)\,2^{(k+1)n+1}}$$