Let $H$ be $C_2\times C_4=\langle a,b\mid a^2, b^4, ab=ba\rangle$ with identity $e$. What group is $$G_H(a, b):=\langle \{x_h\mid h\in H\}\mid \{x_{h'}x_{h'a}x_{h'b}^{-1}\mid h'\in H\}\rangle?$$
Thoughts . . .
For illustration, the group is
$$\langle E, A, R, S,T, X,Y,Z\mid EA=R, AE=X, RX=S, SY=T, TZ=E, XR=Y, YS=Z, ZT=A\rangle$$
with GAP code
F:=FreeGroup("e","a","r","s","t","x","y","z");
rels:=ParseRelators(F,"ea=r,ae=x,rx=s,sy=t,tz=e,xr=y,ys=z,zt=a");
G:=F/rels;`
The group is isomorphic to $$\langle s,t\mid tst^{-1}s(st)^2s^2t^{-1}s, st(s^2t^{-1})^2s^2tst^{-1}\rangle\tag{1}$$ by GAP's IsomorphismSimplifiedFpGroup. Here's the code for the relators:
[ t*a*t^-1*a*(a*t)^2*a^2*t^-1*a, a*t*(a^2*t^-1)^2*a^2*t*a*t^-1 ]
I don't know whether or not the group is finite.
Using inversions & cyclic permutations on $x_ex_ax_b^{-1}$, multiplication in the subscripts by $a$, and the substitutions $y_g:=x_g^{-1}$ & $z_g:=x_{g^{-1}}^{-1}$ altogether, one gets that $G_H(a,b)$ is isomorphic to all of $G_H(a,ab), G_H(a, ab^3),$ and $G_H(a, b^3)$, which have presentations
$$\langle u,v\mid uv(vu)^2uv^{-1}u^{-1}(u^{-1}v^{-1})^2v^{-1}, uv^2u(vu^2v)^2uv^2\rangle,\tag{2}$$
$$\langle m,n\mid mnm^{-1}n(nm)^2m^2n^{-1}m, nm(n^2m^{-1})^2n^2mnm^{-1}\rangle,\tag{3}$$
and $$\langle c,d\mid cdc^2d^{-1}cdcd^{-1}c^2d, dc^{-1}d^{-1}c^{-1}(c^{-1}d)^2cd^{-1}c^2d\rangle,\tag{4}$$
respectively, according to GAP's IsomorphismSimplifiedFpGroup; their code, respectively, is
F:=FreeGroup("e","a","r","s","t","x","y","z");
rels:=ParseRelators(F,"ea=x,ae=r,rx=y,sy=z,tz=a,xr=s,ys=t,zt=e");
G:=F/rels;`
,
F:=FreeGroup("e","a","r","s","t","x","y","z");
rels:=ParseRelators(F,"ea=z,ae=t,rx=a,sy=x,tz=y,xr=e,ys=r,zt=s");
G:=F/rels;
, and
F:=FreeGroup("e","a","r","s","t","x","y","z");
rels:=ParseRelators(F,"ea=t,ae=z,rx=e,sy=r,tz=s,xr=a,ys=x,zt=y");
G:=F/rels;
Please help :)
SimplifiedFpGroup(G);instead ofRelatorsOfFpGroup(Image(IsomorphismSimplifiedFpGroup(G)));. – Shaun Nov 19 '17 at 23:27