Is there any theorem to find the eigenvalues of any anti-circulant matrix with real entries? By anti-circulant matrix, I mean any $n\times n$ matrix of the form :
$$ \begin{pmatrix}a & b & c & d & e & f \\ b & c & d & e & f & a \\ c & d & e & f & a & b \\ d & e & f & a & b & c \\ e & f & a & b & c & d \\ f & a & b & c & d & e \end{pmatrix}$$