3

I am trying to compute the following integral.

$$\int^{\pi}_0\biggl(\frac{\sin(x)}{5-4\cos(x)}\biggr)^2dx$$

My attempt was to expand the integrand and make use of the standard change of variables $t =\tan x/2$. But it turns out to be a lengthy and exhausting computations. I can put all details here since it is not pleasant. at the end I got the answer:

$$\int^{\pi}_0\biggl(\frac{\sin(x)}{5-4\cos(x)}\biggr)^2dx =\frac{\pi}{24}$$ Maybe it is not correct so do not trust this result at 100%

I would like to know if there is an easiest way or trick that quickly leads to the answer?

Guy Fsone
  • 25,237

5 Answers5

7

Let $z=e^{ix}$ and then \begin{eqnarray} &&\int^{\pi}_0\bigg(\frac{\sin(x)}{5-4\cos(x)}\bigg)^2dx\\ &=&\frac12\int^{\pi}_{-\pi}\bigg(\frac{\sin(x)}{5-4\cos(x)}\bigg)^2dx\\ &=&\frac12\int_{|z|=1}\bigg(\frac{\frac{z-\frac1z}{2i}}{5-4\frac{z+\frac1z}{2}}\bigg)^2\frac{dz}{iz}\\ &=&\frac12\int_{|z|=1}\bigg(\frac{z^2-1}{2i(5z-2z^2-2)}\bigg)^2\frac{dz}{iz}\\ &=&-\frac1{8i}\int_{|z|=1}\bigg(\frac{z^2-1}{2z^2-5z+2}\bigg)^2\frac{dz}{z}\\ &=&-\frac1{8i}\int_{|z|=1}\frac{(z^2-1)^2}{z(2z-1)^2(z-2)^2}dz\\ &=&-\frac1{32i}\int_{|z|=1}\frac{(z^2-1)^2}{z(z-\frac{1}{2})^2(z-2)^2}dz\\ &=&-\frac1{32i}\cdot2\pi i\left(\text{Res}\bigg(\frac{(z^2-1)^2}{z(z-\frac{1}{2})^2(z-2)^2},z=0\bigg)+\text{Res}\bigg(\frac{(z^2-1)^2}{z(z-\frac{1}{2})^2(z-2)^2},z=\frac12\bigg)\right)\\ &=&-\frac\pi{16}(1-\frac{5}{3})\\ &=&\frac{\pi}{24}. \end{eqnarray}

Scott H.
  • 578
xpaul
  • 47,821
4

Here you seemed pretty sure of your (fine) proof of $$ \sum_{n\geq 1}\frac{\sin(nx)}{2^n} = \frac{2\sin x}{5-4\cos x} \tag{A}$$ so I wonder how you can be uncertain of the mentioned equality. Given $(A)$, by Parseval's identity

$$ \int_{0}^{\pi}\left(\frac{\sin x}{5-4\cos x}\right)^2\,dx =\frac{1}{8}\sum_{n\geq 1}\frac{\pi}{4^n}=\frac{\pi}{24}\tag{B}$$ nice and easy.

Jack D'Aurizio
  • 361,689
3

The following approach does not use anything beyond the material available in a first course in calculus.


Note that $$\frac{d} {dx} \frac{1}{5-4\cos x} =-\frac{4\sin x} {(5-4\cos x) ^{2}}$$ and hence using integration by parts we have $$I=\left.-\frac{\sin x}{4(5-4\cos x)}\right|_{x=0}^{x=\pi}+\frac{1}{4}\int_{0}^{\pi}\frac{\cos x} {5-4\cos x}\, dx$$ The first term vanishes and the second term can be written as $$-\frac{1}{16}\int_{0}^{\pi}\left(1-\frac{5}{5-4\cos x} \right) \, dx$$ and this evaluates to $$-\frac{\pi} {16}+\frac{5}{16}\frac{\pi}{3}=\frac{\pi}{24}$$ Here we have used the formula $$\int_{0}^{\pi}\frac{dx}{a + b\cos x} =\frac{\pi} {\sqrt{a^{2}-b^{2}}},\, a>|b|$$ which is (not so) easily proved via the substitution $$(a+b\cos x) (a-b\cos y) =a^{2}-b^{2}$$

2

A slight improvement in the complex method - doing it this way you only have to calculate one residue instead of two. Noting that $$\int_{-\pi}^\pi \frac{\sin2x}{(5-4\cos x)^2}\,dx=0$$ because the integrand is odd, your integral $I$ is given by $$\eqalign{I &=\frac12\int_{-\pi}^\pi \frac{\sin^2x}{(5-4\cos x)^2}\,dx\cr &=\frac14\int_{-\pi}^\pi \frac{1-\cos2x}{(5-4\cos x)^2}\,dx\cr &=\frac14\int_{-\pi}^\pi \frac{1-\cos2x-i\sin2x}{(5-4\cos x)^2}\,dx\cr &=\frac14\int_{\rm unit\ circle} \frac{1-z^2}{(5-2(z+\frac1z))^2}\,\frac{dz}{iz}\cr &=\frac1{4i}\int_{\rm uc} \frac{z(1-z^2)}{(2z^2-5z+2)^2}\,dz\cr &=\frac\pi2\,{\rm Res}\Bigl(\frac{z(1-z^2)}{(2z^2-5z+2)^2},z=\frac12\Bigr)\cr}$$ and I'll leave you to show that the residue is $\frac1{12}$.

David
  • 84,708
  • 9
  • 96
  • 166
2

Tha tangent half-angle substitution is not so bad since using $t=\tan(\frac x2)$ $$I=\int\biggl(\frac{\sin(x)}{5-4\cos(x)}\biggr)^2dx=\int\frac{8 t^2}{\left(t^2+1\right) \left(9 t^2+1\right)^2}\,dt$$ Using partial fractions $$\frac{8 t^2}{\left(t^2+1\right) \left(9 t^2+1\right)^2}=\frac{9}{8 \left(9 t^2+1\right)}-\frac{1}{\left(9 t^2+1\right)^2}-\frac{1}{8 \left(t^2+1\right)}$$ The second term needs to be integrated by parts. So, we have $$\int\frac{dt}{\left(9 t^2+1\right)}=\frac{1}{3} \tan ^{-1}(3 t)$$ $$\int\frac{dt}{\left(9 t^2+1\right)^2}=\frac{t}{2 \left(9 t^2+1\right)}+\frac{1}{6} \tan ^{-1}(3 t)$$ $$\int\frac{dt}{ \left(t^2+1\right)}=\tan ^{-1}( t)$$ making $$I=-\frac{t}{2 \left(9 t^2+1\right)}-\frac{1}{8} \tan ^{-1}(t)+\frac{5}{24} \tan ^{-1}(3 t)$$ Integrating between $0$ and $\infty$, the first term is $0$ and you are left with $$\frac 5 {24}\frac \pi 2-\frac 1 {8}\frac \pi 2=\frac \pi {24}$$