To prove: A space $X$ is Hausdorff if and only if the set $\{(x,x)~|~x\in X\}$ is closed in $X\times X$.
If $X$ is Hausdorff then if a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of $X$ converges in $X$, then the limit is unique. So a sequence in the given set, $\{(x_n,x_n)\}_{n=1}^{\infty}$ has to go to the point $(x,x)$ if $\lim_{n\rightarrow\infty}x_n=x$, and it will not converge if the sequence $\{x_n\}_{n=1}^{\infty}$ doesn't. Hence the given set is closed.
How can I show the converse.