$$|x_1|+|x_2|+...+|x_n| \leq \sqrt{x_1^2+x_2^2+...+x_n^2}$$
This inequality is wrong has
$$\sqrt{x_1^2+x_2^2+...+x_n^2}\leq \sqrt{(x_1+x_2+...+x_n)^2}\leq|x_1+x_2+...+x_n|\leq |x_1|+|x_2|+...+|x_n|$$
But where in the process I got it wrong?
$$|x_1|+|x_2|+...+|x_n|=\sqrt{x_1^2}+\sqrt{x_2^2}+...+\sqrt{x_n^2}\leq \sqrt{x_1^2+x_2^2+...+x_n^2}$$