I tried to calculate
$ F(m)=\sum\limits_{k=0}^n(-1)^{n-k}C_n^k k^m,$
where $m=0,1,\cdots,m$, $C_n^k$ is the binomial coefficient $\dfrac{n!}{k!(n-k)!}$.
It's obvious when $k$ is $1,2,3$ by Binomial theorem and differentiation.
e.g. $F(2)=\sum\limits_{k=0}^n(-1)^{n-k}C_n^k k^2 x^{k-1}|_{x=1}=(x\cdot \sum\limits_{k=0}^n(-1)^{n-k} C_n^k k x^{k-1})'|_{k=1}=(x\cdot(\sum\limits_{k=0}^n (-1)^{n-k}C_n^k x^k)')'|_{k=1}=(x\cdot((x-1)^n)')'|_{x=1}=(nx(x-1)^{n-1})'|_{x=1}=[n(x-1)^{n-1}+n(n-1)x(x-1)^{n-2}]|_{x=1}=0.$
And repeat this method then I got
$F(m)=0, 0\leqslant m\leqslant n-1.$
I guess that $F(n)=n!$ because when calculating the general $F(m),m<n$ the last term equals to $\dfrac{n!}{(n-m)!}x^{m-1}(x-1)^{n-m}$. So when $m=n$, the other terms have the factor of $(x-1)$, let $x=1$ then they all equal to 0 except the last one. Let $m=n$, it follows that $F(n)=n!$.
But I'm not sure if my proof is rigorous. And I can not calculate the general $F(m)$ directly.