We want to find integers $a,b,c,d$ such that
$$1000a+100b+10c+d=a^bc^d\tag0$$
$$1\le a\le 9,\quad 0\le b\le 9,\quad 0\le c\le 9,\quad 0\le d\le 9$$
We use the followings (the proofs are written at the end of the answer) :
$(1)$ $c\not=0,1$
$(2)$ $d\not=0$
$(3)$ $b\not=0,1$
$(4)$ $a\not=1$
$(5)$ $d\not=1$
$(6)$ $c^d\le 2499$
$(7)$ If $d$ is odd, then $a,c$ have to be odd. If $d$ is even, then either $a$ or $c$ has to be even.
$(8)$ $(c,d)\equiv (0,0),(1,1),(1,2),(1,3),(2,0),(3,1),(3,2),(3,3)\pmod 4$
$(9)$ If $c=5$, then $d=5$.
$(10)$ If $a^b\equiv 2,3\pmod 5$ with $a$ even, then $a=2,8$.
$(11)$ If $a^b\equiv 2,3\pmod 5$ with $a$ odd, then $a=3,7$.
$(12)$ If $a^b\equiv 4\pmod 5$ with $a$ even, then $a=2,4,8$.
$(13)$ If $a^b\equiv 4\pmod 5$ with $a$ odd, then $a=3,7,9$.
From $(1)(2)(5)(6)(8)(9)$, we see that $(c,d)$ has to be either
$$(4,4),(9,2),(9,3),(2,4),(2,8),(6,4),(3,2),(3,6),(7,2),(3,3),(3,7),(7,3),(3,5)$$
Here, let us separate it into cases and use $(3)(4)(7)(10)(11)(12)(13)$.
Case 1 : If $(c,d)=(4,4)$, then we have $250a+25b+11=64a^b$. So, $b$ has to be odd. Also, we have $4\equiv a^b4^4\pmod{10}\implies a^b\equiv 4,9\pmod{10}$ from which $(a,b)=(4,3),(4,5),(9,3)$ follow. However, these do not satisfy $a^b\le\frac{9999}{4^4}=39+\frac{15}{256}$.
Case 2 : If $(c,d)=(9,2)$, then we have $a+b+11\equiv a^b9^2\equiv 0\pmod 9\implies b\equiv 7-a\pmod 9$, and $a^b\equiv 2\pmod{10}$. Also, from $(4)(7)$, $a=2,8$. These imply $(a,b)=(2,5)$, and then the equation $(0)$ holds.
Case 3 : If $(c,d)=(9,3)$, then from $(7)(11)$, we have $a=3,7$. We also have $b\equiv 6-a\pmod 9$ from which $(a,b)=(3,3)$ follows. However, this does not satisfy $a^b\le\frac{9999}{9^3}=13+\frac{522}{729}$.
Case 4 : If $(c,d)=(2,4)$, then we have $250a+25b+6=4a^b$. So, $b$ has to be even. We also have $a^b\le\frac{9999}{2^4}=624+\frac{15}{16}$ and $a^b\equiv 4,9\pmod{10}$ from which $(a,b)=(2,2),(2,6),(3,2),(7,2),(8,2)$ follow. Also, we have to have $a+b\equiv a^b\pmod 3$ which does not hold for $(a,b)=(2,6),(3,2),(7,2)$. Finally, for $(a,b)=(2,2),(8,2)$, the equation $(0)$ does not hold.
Case 5 : If $(c,d)=(2,8)$, then we have $a^b\le\frac{9999}{2^8}=39+\frac{15}{256}$ and $a^b\equiv 3,8\pmod{10}$. These imply $(a,b)=(2,3)$ for which $a+b+1\equiv a^b\pmod 3$ does not hold.
Case 6 : If $(c,d)=(6,4)$, then we have $b\equiv 8-a\pmod 9$ and $a^b\equiv 4,9\pmod{10}$ from which $(a,b)=(2,6)$ follows. However, this does not satisfy $a^b\le\frac{9999}{6^4}=7+\frac{927}{1296}$.
Case 7 : If $(c,d)=(3,2)$, then, from $(7)(10)$, $a=2,8$. Also, we have $b\equiv 4-a\pmod 9$ from which $(a,b)=(2,2)$ follows. However, this does not satisfy $a^b\equiv 7\pmod{10}$.
Case 8 : If $(c,d)=(3,6)$, then, from $(7)(12)$, $a=2,4,8$. Also, we have $b\equiv 9-a\pmod 9$ and $a^b\equiv 4\pmod{10}$ from which $(a,b)=(4,5)$ follows. However, this does not satisfy $a^b\le\frac{9999}{3^6}=13+\frac{522}{729}$.
Case 9 : If $(c,d)=(7,2)$, then, from $(7)(10)$, $a=2,8$. Also, we have $a^b\equiv 8\pmod{10}$ from which $(a,b)=(2,3),(2,7)$ follow. However, for each case, the equation $(0)$ does not hold.
Case 10 : If $(c,d)=(3,3)$, then, from $(7)(13)$, $a=3,7,9$. Also, we have $b\equiv 12-a\pmod 9$ from which $(a,b)=(9,3)$ follows. However, this does not satisfy $a^b\le\frac{9999}{3^3}=370+\frac{1}{3}$.
Case 11 : If $(c,d)=(3,7)$, then we have $b\equiv 8-a\pmod 9$ and $a^b\equiv 1\pmod{10}$. There are no such $(a,b)$.
Case 12 : If $(c,d)=(7,3)$, then we have $a^b\equiv 1\pmod{10}$ from which $(a,b)=(3,4),(3,8),(7,4),(9,2),(9,4)$ follow. However, these do not satisfy $a^b\le\frac{9999}{7^3}=29+\frac{52}{343}$.
Case 13 : If $(c,d)=(3,5)$, then, from $(7)(11)$, $a=3,7$. Also, we have $b\equiv 10-a\pmod 9$ from which $(a,b)=(3,7),(7,3)$ follow. However, these do not satisfy $a^b\le\frac{9999}{3^5}=41+\frac{36}{243}$.
Therefore, $\color{red}{(a,b,c,d)=(2,5,9,2)}$ is the only solution.
Finally, let us prove $(1),(2),\cdots,(13)$.
$(1)$ $c\not=0,1$
Proof : If $c=0$, then $1000a+100b+1=0$ is not a four-digit number.
If $c=1$, then $a^{b-1}=1000+\frac{100b+10+d}{a}$ which implies $1000+\frac{10}{9}\le a^{b-1}\le 1919=1000+\frac{919}{1}$. So, $(a,b)=(4,6),(6,5)$. For each case, there is no such integer $d$. $\quad\blacksquare$
$(2)$ $d\not=0$
Proof : If $d=0$, then $1000a+100b+10c=a^b$ implies $10\mid a$ which is impossible. $\quad\blacksquare$
$(3)$ $b\not=0,1$
Proof : If $b=0$, then $1000a+10c+d=c^d$ implies $d\equiv c^d\pmod{10}$ which gives $(c,d)=(1,1),(7,3),(5,5),(4,6),(6,6),(3,7),(9,9)$. For each case, there is no such $a$.
If $b=1$, then $1000+\frac{100+10c+d}{a}=c^d$ which implies $1013+\frac{4}{9}=1000+\frac{121}{9}\le c^d\le 1000+\frac{199}{1}=1199$. So, we have $(c,d)=(4,5)$, but there is no such $a$. $\quad\blacksquare$
$(4)$ $a\not=1$
Proof : If $a=1$, then we have $1000+100b+10c+d=c^d$ which gives $1212\le c^d\le 1999$. So, we have $(c,d)=(6,4)$, but there is no such $b$. $\quad\blacksquare$
$(5)$ $d\not=1$
Proof : If $d=1$, then $a^{b-1}=\frac{1000a+100b+10c+1}{ca}$ which gives $27+\frac{34}{81}=\frac{2221}{9^2}\le a^{b-1}\le\frac{9991}{2^2}=2497+\frac 34$. So, $$\begin{align}(a,b)=&(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(4,4),(4,5),(4,6),\\&(5,4),(5,5),(6,3),(6,4),(6,5),(7,3),(7,4),(8,3),(8,4),(9,3),(9,4).\end{align}$$ For each case, there is no such integer $c$. $\quad\blacksquare$
$(6)$ $c^d\le 2499$
Proof : $c^d=\frac{1000a+100b+10c+d}{a^b}\le\frac{9999}{2^2}=2499+\frac 34$. $\quad\blacksquare$
$(7)$ If $d$ is odd, then $a,c$ have to be odd. If $d$ is even, then either $a$ or $c$ has to be even.
Proof : Since $b,d\not=0$, we have $a^bc^d\equiv ac\pmod 2$. So, $d\equiv 1000a+100b+10c+d\equiv a^bc^d\equiv ac\pmod 2$. $\quad\blacksquare$
$(8)$ $(c,d)\equiv (0,0),(1,1),(1,2),(1,3),(2,0),(3,1),(3,2),(3,3)\pmod 4$
Proof : We have $2c+d\equiv a^bc^d\pmod 4$. For $(c,d)\equiv (0,1),(0,2),(0,3)$, we have $d\equiv 0$ which is impossible. For $(c,d)\equiv (1,0),(3,0)$, we have $2\equiv a^b$ which is impossible since we already have $b\not=1$. For $(c,d)\equiv (2,2),(2,3)$, we have $2\ \text{or}\ 3\equiv 0$ which is impossible. Also, $(c,d)\equiv (2,1)$ is impossible from $(7)$. $\quad\blacksquare$
$(9)$ If $c=5$, then $d=5$.
Proof : We have $d\equiv a^bc^d\pmod 5$. If $c=5$, then $d\equiv 0\pmod 5$. $\quad\blacksquare$
$(10)$ If $a^b\equiv 2,3\pmod 5$ with $a$ even for some $b$, then $a=2,8$.
Proof : If $a=4$, then $a^b\equiv (-1)^b\equiv 1,4\pmod 5$ for any $b\ge 2$. If $a=6$, then $a^b\equiv 1\pmod 5$ for any $b\ge 2$. $\quad\blacksquare$
$(11)$ If $a^b\equiv 2,3\pmod 5$ with $a$ odd for some $b$, then $a=3,7$.
Proof : If $a=5$, then $a^b\equiv 0\pmod 5$ for any $b\ge 2$. If $a=9$, then $a^b\equiv (-1)^b\equiv 1,4\pmod 5$ for any $b\ge 2$. $\quad\blacksquare$
$(12)$ If $a^b\equiv 4\pmod 5$ with $a$ even for some $b$, then $a=2,4,8$.
Proof : If $a=6$, then $a^b\equiv 1\pmod 5$ for any $b\ge 2$. $\quad\blacksquare$
$(13)$ If $a^b\equiv 4\pmod 5$ with $a$ odd for some $b$, then $a=3,7,9$.
Proof : If $a=5$, then $a^b\equiv 0\pmod 5$ for any $b\ge 2$. $\quad\blacksquare$