This can not be formulated as a linear programming problem. We need extra binary variables and end up with a MIP.
First we do:
$$ a > b \Longleftrightarrow \delta = 1$$
This can be formulated as:
$$\begin{align}
&a \ge b + 0.001 - M(1-\delta)\\
&a \le b + M\delta\\
&\delta \in \{0,1\}
\end{align}$$
(in practice I would drop the $0.001$ term).
Next we do:
$$\begin{align}
&\delta=1 \Longrightarrow c=d\\
&\delta=0 \Longrightarrow c=e
\end{align}$$
This can be written as:
$$\begin{align}
& d-M(1-\delta)\le c \le d + M(1-\delta)\\
& e-M\delta\le c \le e + M\delta\\
\end{align}$$
Many modern MIP solvers have indicator constraints. This can make things easier as one can write implications directly without big-M constraints.