Let $f \in C[0,1]$ be a function satisfying the a Lipschitz condition, so that $|f(x,y_2)-f(x,y_1)\le L|y_2-y_1|$ for all $(x,y_2), (x,y_1) \in [0,1]\times \mathbb{R}$, where $L<8$. Show that the integral operator
$$T(u) = \int_0^1 g(x,\xi) f(\xi, u(\xi))d\xi$$
is a contraction mapping on the normed space of continuous functions $\left(C[0,1], \|\cdot\|_\infty\right)$.
Where
$$g(x,\xi)=\cases{\xi(x-1) & if $0\le \xi\le x \le 1$\\ x(\xi-1) & if $0\le x \le \xi \le 1$}$$
$T(u)$ is actually related to the boundary value problem $u''(x)=f(x,u), u(0)=u(1)=0$.
Here's how I approached this problem:
$$\left|T(u_1)-T(u_2)\right|=\left| \int_0^1 \left( g(x,\xi)f(\xi, u_1(\xi)) - g(x,\xi)f(\xi, u_2(\xi)) \right) d\xi \right|$$ $$ \le \int_0^1 | g(x,\xi) | |f(\xi, u_1(\xi)) - f(\xi, u_2(\xi)) | d\xi \le L \int_0^1 | g(x,\xi) | | u_1(\xi) - u_2(\xi) | d\xi$$
Thus
$$\left\|T(u_1)-T(u_2)\right\|_\infty \le L \| g(x,\xi) \|_\infty \int_0^1 \| u_1(\xi) - u_2(\xi) \|_\infty d\xi=L \| g(x,\xi) \|_\infty \| u_1(\xi) - u_2(\xi) \|_\infty$$ $$<8 \| g(x,\xi) \|_\infty \| u_1(\xi) - u_2(\xi) \|_\infty$$
So, as far as I understand, one needs to prove here that $\| g(x,\xi) \|_\infty < \frac18$.
Would appreciate some help.