Let $1<p<\infty$. Let $x,y\in l^p$ such that $||x||_p=1$, $||y||_p=1$ and $x\neq y$. Would you help me to show that for any $0<t<1$, $||tx+(1-t)y||_p<1$.
My answer : By using Minkowski inequality, we get $||tx+(1-t)y||_p\leq t||x||_p+(1-t)||y||_p=t+(1-t)=1$. But I don't get the strict inequality.
But, For $p=2$: \begin{eqnarray} ||tx+(1-t)y||_2^2&=&t^2||x||_2^2+(1-t)^2||y||_2^2+2t(1-t)\Re(<x,y>)\\&=&1+2t(1-t)(\Re(<x,y>)-1)) \end{eqnarray}
Since $x\neq y$ and $||x||_2=||y||_2$, we conclude that $x\neq ky$ for every scalar hence we get $\Re(<x,y>)\leq|<x,y>|<||x||_2||y||_2=1$. So, $||tx+(1-t)y||_2<1$.
Thanks everyone.