0

Assume $f:[a, b] \times \Bbb R\to \Bbb R $ is continuous and satisfies the following condition: $$\color{red}{\forall \eta \in \Bbb R,~\exists \ \delta = \delta(\eta)~,L(\eta)~\forall \ y_1, y_2 \in [\eta - \delta, \eta + \delta]\\\implies \lvert f(x, y_1) - f(x, y_2) \rvert \leq L\lvert y_1 - y_2 \rvert}~~\forall ~~x\in [a,b]$$ for fixed $\eta\in\Bbb R$ we define $$\chi(y) =\begin{cases} 1&~~\text{if}~~|y-\eta| <\delta/2\\ 2-\frac{2}{\delta}|y-\eta|&~~\text{if}~~\delta/2\le |y-\eta| <\delta \\ 0&~~\text{if}~~|y-\eta|\ge \delta \end{cases}$$

Question: I would like to prove that, $[a, b] \times \Bbb R \ni (x,y)\mapsto \chi(y)f(x,y)$ is Lipschitz in $y$ variables.

Edit

I believe this may help: Is a Lipschitz function differentiable?

Guy Fsone
  • 25,237

1 Answers1

0

I will drop the argument $x$, as the assumption is uniform in $x$ anyway.

Let $g=\chi f$ and $I=[\eta - \delta, \eta + \delta]$. It is sufficient to show that $g$ is Lipschitz in $I$. Notice for example, if $M$ is a Lipschitz constant of $g$, $y_1 \notin I, y_2 \in I, y_1 < y_2$, then $$ |g(y_1) - g(y_2)| = |g(\eta - \delta) + g(y_2) | \le M |\eta - \delta - y_2| \le M|y_1 - y_2|.$$

The short way: Using derivative a.e. and product rule, we obtain a.e. $$ |g’| \le \frac2\delta \sup_{y\in I} |f(y)| + 1 \cdot L < \infty.$$ Thus, $g$ is Lipschitz.

The long way: use the definition.

user251257
  • 9,417