Let $$f(z)=\int _{-\infty }^{\infty }\frac{\sin\left(wz\right)}{w}\:dw$$
$$f'(z)=\int _{-\infty }^{\infty }\sin\left(wz\right)\:dw=\lim _{x\to \infty }\left(\frac{\cos\left(wz\right)}{z}\right)-\lim _{x\to -\infty }\left(\frac{\cos\left(wz\right)}{z}\right)= \cos\left(\infty \right)-\cos\left(-\infty \right)=\cos\left(\infty \right)-\cos\left(\infty \right)=0$$
$f(z)= 0 + C$; $f(0)=\int _{-\infty }^{\infty }\frac{\sin\left(w0\right)}{w}\:dw \Leftrightarrow 0 = 0 + C \Leftrightarrow C=0 $
I should have obtained $\pi $, since $\frac{\sin\left(w\right)}{w}$ is an even function and $\int _{0\:}^{\infty \:}\frac{\sin\left(w\right)}{w}\:dw$ = $\frac{\pi }{2}$