It's possible to define $\ln(x)$ or $e$ in numerous different ways, such that they don't have to depend on each other. So too can you prove that $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}$ or $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$, though the method may depend on how you've defined each construct.
@Bernard's answer covers the case that $\ln(x):=y$ such that $x=e^y$. Likewise, @Chris Custer's answer covers the case that $\ln(x):=\int_1^x\frac{1}t\,\mathrm{d}t$. For completeness, there's a few other ways you can define $\ln(x)$.
Limit Definition
If $\ln(x):=\lim_{h\to0}\frac{x^h-1}{h}$, then:
$$\begin{aligned}\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)
&=\lim_{g\to0}\frac{\lim_{h\to0}\frac{(x+g)^h-1}{h}-\lim_{h\to0}\frac{x^h-1}{h}}{g}
\\\text{Definition of derivative.}&
\\&=\lim_{g\to0}\lim_{h\to0}\frac{(x+g)^h-1-x^h+1}{hg}
\\\text{Multiply through by $h$.}&
\\&=\lim_{g\to0}\lim_{h\to0}\frac{x^h(\frac{g}{x}+1)^h-x^h}{hg}
\\\text{Put in form $(z+1)^\alpha$.}&
\\&=\lim_{g\to0}\lim_{h\to0}\frac{x^h\left[1+h\frac{g}{x}+\binom{h}{2}\frac{g^2}{x^2}+\ldots\right]-x^h}{hg}
\\\text{Binomial Series.}&
\\&=\lim_{g\to0}\lim_{h\to0}\frac{\color{red}{\not}{x^h}+hgx^{h-1}+\binom{h}{2}g^2x^{h-2}+\ldots-\color{red}{\not}{x^h}}{hg}
\\\text{Cancel terms.}&
\\&=\lim_{g\to0}\lim_{h\to0}\left[x^{h-1}+hg(\ldots)\right]
\\\text{Factor $h$ and $g$.}&
\\&=x^{-1}
\end{aligned}$$
You may ask how we'd calculate $y=x^{0.0\ldots01}$ without logarithms. We can do it with the Newton-Raphson method, finding the roots of $y^{100\ldots0}-x=0$. We can use similar methods to compute $x^r$ for rational $r$.
Series Definition
We can also define $\ln(x)$ by its Taylor series. In this case, its derivative is, for $0<x<2$:
$$\begin{aligned}
\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)
&=\frac{\mathrm{d}}{\mathrm{d}x}\left(-\sum_{n\geq1}\frac{(1-x)^n}{n}\right)
\\&=-\left(\sum_{n\geq1}\frac{n(1-x)^{n-1}\cdot(-1)}{n}\right)
\\\text{Differentiate each term.}&
\\&=\sum_{n\geq1}(1-x)^{n-1}
\\\text{Cancelled $n$ and $-1$.}&
\\&=\frac{1}{1-(1-x)}
\\\text{Limit of geometric series.}&
\\&=\frac{1}{x}
\end{aligned}
$$
Whether it's really justified to differentiate an infinite series is a bit hand-wavey, I'll admit but I think this answer gives a fairly good feel for how you can show that $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}$ with alternative definitions. In fact we haven't used $e$ once. We can probaly be able to prove the derivative with other means too. This Question gives some ways of proving it.