I have known the data of $\pi_m(SO(N))$ from this Table: $$\overset{\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\quad\textbf{Homotopy groups of orthogonal groups}}{\begin{array}{lccccccccc} \hline & \pi_1 & \pi_2 & \pi_3 & \pi_4 & \pi_5 & \pi_6 & \pi_7 & \pi_8 & \pi_9 \\ \hline SO(2) & Z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline SO(3) & \boxed{Z_2} & 0 & Z & Z_2 & Z_2 & Z_{12} & Z_2 & Z_2 & Z_3 \\ \hline SO(4) & Z_2 & \boxed{0} & (Z)^{\times2} & (Z_2)^{\times2} & (Z_2)^{\times2} & (Z_{12})^{\times2} & (Z_2)^{\times2} & (Z_2)^{\times2} & (Z_3)^{\times2} \\ \hline SO(5) & Z_2 & 0 & \boxed{Z} & Z_2 & Z_2 & 0 & Z & 0 & 0 \\ \hline SO(6) & Z_2 & 0 & Z & \boxed{0} & Z & 0 & Z & Z_{24} & Z_2 \\ \hline SO(n),\;\ n>6 & Z_2 & 0 & Z & 0 & 0 & 0 & & & \\ \hline \end{array}}$$
I wonder whether there are some useful information that I can relate $\pi_m(SO(N))$ and $\pi_m(O(N))$?
Here is the difficulty somehow posted by MO to obtain $\pi_m(O(N))$, https://mathoverflow.net/questions/99663/homotopy-groups-of-on
But generally there seem to be some relations, like this:

Can I get the full Table of $\pi_m(O(N))$ from $m=1$~$10$ and $N=2$~$11$ precisely? Any literatures?
Hence all of $O(n)$, $SO(n)$, $Spin(n)$ have the same higher homotopy.
– Tyrone Oct 03 '17 at 13:17