1 ) Premise
Consider a $(m \times n)$ binary matrix $\boldsymbol{A}$ as already indicated by Markus.
Each row represents a subset of the set $\{1, \cdots,n\}$, and we shall have
that each of the $m$ rows has at least one $'1'$ on the same column with
any of the others.
In other words: that no row vector be normal to any of the others, or that $\boldsymbol {AA^T}$
does not contain zero values.
The all zeros vector = empty vector is normal to itself and to any other vector, and shall be accounted carefully.
We follow here the strategy to include it in the computations and elide it at the proper step.
We have $2^n$ possible vectors (empty included), and, since they can be repeated, $2^{nm}$ possible matrices.
2) Normal vectors
Consider a vector with $q$ ones. Clearly all the vectors normal to that shall have $q$ $'0'$s
corresponding to the $'1'$s, and whatever value in the remaining positions.
$$ \bbox[lightyellow] {
\begin{array}{c|cccccc}
{} & 1 & 2 & 3 & \cdots & {n - 1} & n \\
\hline
{\mathbf{V}_{\,q} \;\;:q\;'1'} & 1 & 0 & 1 & \cdots & 0 & 1 \\
{\mathbf{V}_{\,q \bot } : \bot \mathbf{V}_{\,q} } & \text{0} & \text{x} & \text{0} & \cdots & \text{x} & \text{0} \\
\end{array}
} \tag{1}$$
There are ${n \choose q}$ vectors with $q$ ones, $2^{n-q}$ vectors normal to each of them , $2^{n}-2^{n-q}$ vectors
not normal.
Since the second vector is repeated, we can sum the above over $q$ to get the number of couples of vectors
normal to each other
$$ \bbox[lightyellow] {
H_{\,2} = \sum\limits_{0\, \le \,q\, \le \,n} {\left( \matrix{
n \cr
q \cr} \right)2^{\,n - q} } = \sum\limits_{0\, \le \,q\, \le \,n} {\left( \matrix{
n \cr
q \cr} \right)2^{\,q} } = \left( {1 + 2} \right)^{\,n} = 3^{\,n}
} \tag{2}$$
To append a third vector normal to the 1st and 2nd we repeat the scheme above:
- ${n \choose q_1}$ ways to choose the 1st vector
- ${{n-q_1} \choose q_2}$ ways to choose the 2nd vector
- $2^{n-q_{1}-q_{2}}$ ways to choose the 3rd vector
$$ \bbox[lightyellow] {
\eqalign{
& H_{\,3} = \sum\limits_{0\, \le \,q_{\,1} \, \le \,n} {\sum\limits_{0\, \le \,q_{\,2} \, \le \,n} {\left( \matrix{
n \cr
q_{\,1} \cr} \right)\left( \matrix{
n - q_{\,1} \cr
q_{\,2} \cr} \right)2^{\,n - q_{\,1} - q_{\,2} } } } = \cr
& = 2^{\,n} \sum\limits_{0\, \le \,q_{\,1} \, \le \,n} {\left( \matrix{
n \cr
q_{\,1} \cr} \right)\left( {\sum\limits_{0\, \le \,q_{\,2} \, \le \,n} {\left( \matrix{
n - q_{\,1} \cr
q_{\,2} \cr} \right)2^{\, - q_{\,2} } } } \right)2^{ - q_{\,1} } } = \cr
& = 2^{\,n} \left( {1 + 1/2} \right)^n \sum\limits_{0\, \le \,q_{\,1} \, \le \,n} {\left( \matrix{
n \cr
q_{\,1} \cr} \right)3^{ - q_{\,1} } } = 3^n \left( {1 + {1 \over 3}} \right)^n = 4^n \cr}
} $$
It is easy to check that we can write the above as
$$ \bbox[lightyellow] {
\eqalign{
& H_{\,3} (n) = \sum\limits_{0\, \le \,q_{\,1} \, \le \,n} {\sum\limits_{0\, \le \,q_{\,2} \, \le \,n} {\left( \matrix{
n \cr
q_{\,1} \cr} \right)\left( \matrix{
n - q_{\,1} \cr
q_{\,2} \cr} \right)2^{\,n - q_{\,1} - q_{\,2} } } } = \cr
& = \sum\limits_{0\, \le \,q_{\,2} \, \le \,n} {\left( \matrix{
n \cr
q_{\,2} \cr} \right)H_{\,2} (n - q_{\,2} )} \cr}
}$$
and thus that we can generalize them to get the number of mutually normal $h$-uples
$$ \bbox[lightyellow] {
H_{\,h} = \left( {h + 1} \right)^{\,n}
} \tag{3.a}$$
and that their number excluding the empty vector $H_ {* _{\,h}}$ is
$$ \bbox[lightyellow] {
H_{\,h} = \left( {h + 1} \right)^{\,n} = \sum\limits_{0\, \le \,j\, \le \,n} {\left( \matrix{
n \cr
j \cr} \right)h^{\,n - j} } \quad \Rightarrow \quad H_{ * _{\,h}} = h^{\,n}
} \tag{3.b}$$
Let's now note that for 2 vectors normal to a third are not necessarily mutually normal.
$$ \bbox[lightyellow] {
\left( {1 \bot 2} \right) \cap \left( {1 \bot 3} \right) \cap \left( {2 \bot 3} \right) \ne \left( {1 \bot 2} \right) \cap \left( {1 \bot 3} \right)
}$$
So we need to refer back to the table (1) and imagine to add further rows with $y,z, ..$ etc.
in correspondence of the $x$'s, and then refer to (2) to get
$$ \bbox[lightyellow] {
H_{1,\,m} = \left| {\,\left( {1 \bot 2} \right) \cap \left( {1 \bot 3} \right) \cap \cdots \cap \left( {1 \bot m} \right)\,} \right| = \left( {1 + 2^{m - 1} } \right)^n
} \tag{4.a}$$
But, when there is not a common vector
$$ \bbox[lightyellow] {
\left| {\,\left( {1 \bot 2} \right) \cap \left( {3 \bot 4} \right)\,} \right| = H_{\,2} ^2
} \tag{4.b}$$
3) $m$-uples with at least one normal couple
At this step we shall compute the number of $m$-uples of vectors that contains one or more couples.
To this scope we can resort to the inclusion-exclusion principle.
So for $m=3$ we get
$$ \bbox[lightyellow] {
\eqalign{
& Q_{\,3} = \left| {\,\left( {1,2} \right) \cup \left( {1,3} \right) \cup \left( {2,3} \right)\,} \right| = \cr
& = \left| {\,\left( {1,2} \right)\,} \right| + \left| {\,\left( {1,3} \right)\,} \right| + \left| {\,\,\left( {2,3} \right)} \right| + \cr
& - \left| {\,\left( {1,2} \right) \cap \left( {1,3} \right)\,} \right| - \left| {\,\left( {1,2} \right) \cap \left( {2,3} \right)\,} \right| - \left| {\,\left( {1,3} \right) \cap \left( {2,3} \right)\,} \right| + \cr
& + \left| {\,\left( {1,2} \right) \cap \left( {1,3} \right) \cap \left( {2,3} \right)\,} \right| = \cr
& = 3H_{\,2} 2^{\,n} - 3H_{\,1,3} + H_{\,3} = 3 \cdot 3^{\,n} \cdot 2^{\,n} - 3 \cdot 5^{\,n} + 4^{\,n} = \cr
& = 3\left( {6^{\,n} - 5^{\,n} } \right) + 4^{\,n} \cr}
} \tag{5}$$
which includes the null vector.
It returns $1,\, 7,\,49,\,337,\,2296,\,14977,\,97189,\,\cdots\quad|\;n=0,1,\cdots$ which
checks with computation.
Interesting to note that, when complemented ($\overline Q _m = 2^{\,m\,n} - Q_m $) it gives
$$0,\, 1,\,15,\,175,\,1827,\,17791,\,164955,\,\cdots$$
that is the sequence indicated by Markus, and which is a logical deduction from the inclusion-exclusion principle.
It remains to find a suitable extension of the formula above to general values of $m$,
that allows to by-pass the inclusion-exclusion formula, also considering the
difficulty introduced with (4.b).