When $K$ is a nonempty subset of a metric space $M$, $\forall x \in M$ let $P_K(x)=\{y \in K: d(x,y)=d_K(x)=\inf_{k \in K}d(x,k)\}$ (metric projection)
$\bullet$ The set $K$ is $proximinal$ in $M$ if $\forall x \in M$ the set $P_K(x) \neq \emptyset$.
$\bullet$ And The set $K$ is $\varepsilon-proximinal$ in $M$ if $P_K(x)\neq \emptyset$ for each point $x$ of $M$ with $d_K(x)>\varepsilon$.
It's clear every $proximinal$ set is $\varepsilon-proximinal$ set. I'm looking for a $\boldsymbol{\varepsilon}\textbf{$-proximinal$ that is not $proximinal$}$ set ?!