The MLE estimator of the variance of a normal distribution is $\hat \sigma^2 = \frac{1}{N} \sum_{i=1}^{N}(X_i - \bar X)^2$, where $\bar X$ is the sample mean and $X_i \sim^{iid} \mathcal{N}(\mu,\sigma^2)$ . I'm curious because I've seen (e.g. http://www.stat.ufl.edu/~winner/sta6208/allreg.pdf , p.20) that the variance of this estimator is equal to $\frac{2\sigma ^4}{N}$, but I find something different:
Since $\frac{1}{\sigma ^2} \sum_{i=1}^{N}(X_i-\bar X)^2 \sim \chi^2_{N-1}$, we have that
\begin{align} var\big(\frac{N\hat \sigma^2}{\sigma^2}\big) = var(\chi^2_{N-1}) = 2(N-1) \\ \implies var(\hat \sigma ^2) = \frac{2(N-1) \sigma^4}{N^2} \end{align}
What am I missing?